

PEMERINTAH KOTA SURABAYA
DINAS LINGKUNGAN HIDUP
JALAN JIMERTO 25-27 (60272) - SURABAYA
(031) 5312144

http://lh.surabaya.go.id

Laporan kajian ini berisi analisa emisi gas rumah kaca serta rekomendasi rencana aksi penurunan gas rumah kaca di Kota Surabaya tahun 2021. Laporan ini diharapkan dapat memberikan manfaat untuk semua pihak. Penyusun menyadari laporan ini belum sempurna, sehingga kami terbuka apabila ada kritik dan saran dari pembaca. Terimakasih kepada seluruh pihak yang telah membantu pelaksanaan penyusunan laporan Kajian Inventarisasi Gas Rumah Kaca Kota Surabaya Tahun 2021.

PEMERINTAH KOTA SURABAYA DINAS LINGKUNGAN HIDUP JALAN JIMERTO 25-27 (60272) - SURABAYA (031) 5312144 http://lh.surabaya.go.id

TIM PENYUSUN

Penyusun:

Pemerintah Kota Surabaya

Dinas Lingkungan Hidup

Dr. Eng. Arie Dipareza, S.T., MEPM

Editor:

Maria Theresia Ekawati Rahayu, S.H., M.H.

Ir. Chamidha, M.T.

Dyan Prasetyaningtyas, S.T.

Srifatunningsih, S.T.

Bambang Prakoso

Moch. Safi'i

Elly Yuliana Kurnianingsih, S.Si.

Zamrotin Meilafia L.F., S.T.

Rachmad Syafiq

Lintang Nurulita E.D., S.Pi

Anggraeni Putri S., S.K.M.

Mudayatin, Amd. KL.

Pangki Andi C., S.E.

Dr. Eng. Arie Dipareza, S.T., MEPM

Daniar Rahmasari, S.T.

Farah Aulia Prasanti, S.T.

Saili Ngulfia Kholida, S.T.

Desain Sampul dan Tata Letak:

Dr. Eng. Arie Dipareza, S.T., MEPM Saili Ngulfia Kholida, S.T.

Penerbit:

Pemerintah Kota Surabaya

Dinas Lingkungan Hidup

Jalan Jimerto Nomor 25-27 Surabaya 60272

Telepon (031) 5312144 ext. 390, 343, 570, 148, 513 Fak. (031) 5472924

Redaksi:

Pemerintah Kota Surabaya

Dinas Lingkungan Hidup

Jalan Jimerto Nomor 25-27 Surabaya 60272

Telepon (031) 5312144 ext. 390, 343, 570, 148, 513 Fak. (031) 5472924

Cetakan Pertama, September 2021

KATA PENGANTAR

Puji syukur kami panjatkan kehadirat Allah SWT yang telah memberikan rahmat serta karunia-Nya sehingga Laporan Kajian Inventarisasi Gas Rumah Kaca (GRK) Kota Surabaya Tahun 2021 di Surabaya ini dapat diselesaikan.

Penyusunan laporan ini bertujuan untuk inventarisasi emisi gas rumah kaca (GRK) dari Sektor Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya (*Agriculture, Forestry and Landuse*/AFOLU), Sektor Energi, Sektor Limbah, serta Sektor Proses Industri dan Penggunaan Produk (*Industrial Process and Product Usage*/IPPU) dalam skala Kota Surabaya. Hasil dari inventarisasi gas rumah kaca memberikan hasil perhitungan emisi GRK Kota Surabaya tahun 2020. Hasil inventarisasi dijadikan salah satu acuan dalam mengambil kebijakan rencana aksi daerah dalam upaya menurunkan emisi GRK.

Laporan Kajian Inventarisasi Gas Rumah Kaca (GRK) Kota Surabaya Tahun 2021 ini berisikan pendahuluan, tinjauan kebijakan, metodologi, gambaran umum, analisis dan pembahasan, rekomendasi upaya pengurangan GRK, serta kesimpulan dan saran. Laporan ini berisi hasil perhitungan potensi gas rumah kaca yang dihasilkan dari berbagai sumber yang berpotensi menimbulkan gas rumah kaca. Data yang kami olah adalah data yang diperoleh secara primer dan sekunder.

Akhir kata, tidak lupa kami sampaikan ucapan terimakasih kepada berbagai pihak yang telah membantu kelancaran pelaksanaan pengumpulan data dan informasi hingga penyusunan Laporan Kajian Inventarisasi GRK Kota Surabaya Tahun 2021. Kritik dan saran kami harapkan demi kesempurnaan laporan ini dan semoga laporan ini bermanfaat.

Surabaya, September 2021 Plt. Kepala Dinas Lingkungan Hidup Kota Surabaya,

(Maria Theresia Ekawati Rahayu, S.H., M.H.)

DAFTAR ISI

TIM PENY	USUNi
KATA PEN	IGANTARii
DAFTAR IS	SIiii
	ABELvii
	NDAHULUAN 1
1.1	Latar Belakang
1.2	Tujuan dan Sasaran3
1.3	Dasar Hukum4
1.4	Ruang Lingkup4
1.5	Sistematika Penulisan5
1.6	Jadwal Pelaksanaan9
BAB 2 TIN	JAUAN KEBIJAKAN 10
2.1	Peraturan Presiden Nomor 61 Tahun 2011 tentang Rencana Aksi Nasional
	Penurunan Emisi Gas Rumah Kaca10
2.2	Peraturan Presiden Nomor 71 Tahun 2011 tentang Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional
2.3	Peraturan Gubernur Jawa Timur Nomor 67 Tahun 2012 tentang Rencana Aksi Daerah Penurunan Emisi Gas Rumah Kaca Provinsi Jawa Timur
2.4	Rencana Aksi Nasional dan Daerah Penurunan Emisi Gas Rumah Kaca 13
2.5	Undang-Undang Nomor 16 Tahun 2016 tentang Pengesahan <i>Paris Agreement on Climate Change</i>
2.6	Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.73/MENLHK/SETJEN/KUM.1/12/2017 tentang Pedoman Penyelenggaraan dan Pelaporan Inventarisasi Gas Rumah Kaca Nasional 20
2.7	Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 22 Tahun 2019 tentang Pedoman Penyelenggaraan Inventarisasi dan Mitigasi Gas Rumah Kaca Bidang Energi
2.8	Undang-Undang Republik Indonesia Nomor 11 Tahun 2020 tentang Cipta Kerja21
2.9	Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup

	2.10	Peratu Pohon	uran Daerah Kota Surabaya Nomor 19 Tahun 2014 tentang Perlindo n 22	ungar
	2.11		uran Daerah Kota Surabaya Nomor 5 Tahun 2014 tentang Penge ah di Kota Surabaya	
	2.12		uran Walikota Surabaya Nomor 67 Tahun 2018 tentang Kon ah dalam Penggunaan Layanan Bus Surabaya	
BAB	3 ME	TODOL	.OGI	25
	3.1	Sektor	r Energi	27
		3.1.1	Pembakaran Bahan Bakar pada Sumber Tidak Bergerak	27
		3	3.1.1.1 Perhitungan Emisi dari Bahan Bakar Berdasarkan Nilai Kalor	28
		3.1.2	Pembakaran Bahan Bakar pada Sumber Bergerak	30
	3.2	Sektor	Limbah	31
		3.2.1	Sektor Limbah Padat	32
		3.2.2	Sektor Limbah Cair	32
	3.3	Sektor	AFOLU (Agriculture, Forestry, and Other Land Use)	33
		3.3.1	Sub Sektor Peternakan	34
		3	3.3.1.1 Fermentasi Enterik	34
		3	3.3.1.2 Pengelolaan Ternak	35
		3.3.2	Subsektor Pertanian	36
		3	3.3.2.1 Emisi Karbondioksida (CO ₂) dari Lahan Pertanian	36
		3	3.3.2.2 Emisi Karbondioksida (CO ₂) dari Penggunaan Pupuk Urea	37
	3.4	Sektor	PPU (Industrial Process and Product Uses)	37
		3.4.1	Industri Produsen Keramik	38
		3.4.2	Industri Produsen Calcined Petroleum Coke	39
		3.4.3	Industri Produsen Glassware	40
		3.4.4	Industri Produsen Conveyor Belt dan Rubber Article	41
		3.4.5	Industri Produsen <i>Plate</i> Baja	42
BAB	4 GAI	MBARA	N UMUM	43
	4.1	Gamb	aran Umum Kota Surabaya	43
	12	Saktor	r-Sektor Emisi Gas Rumah Kaca Kota Surahaya	43

		4.2.1	Sektor Energi	. 43
		4.2.2	Sektor Limbah	. 45
			4.2.2.1 Sektor Limbah Padat	. 45
			4.2.2.2 Limbah Cair	. 48
		4.2.3	Sektor AFOLU (Agriculture, Forestry and Other Land Use)	. 48
		4.2.4	Sektor IPPU (Industrial Process and Product Uses)	. 50
BAB	5 ANA	ALISIS	DAN PEMBAHASAN	. 53
	5.1 A	nalisis	dan Pembahasan Sektor Energi	. 53
		5.1.1	Pembakaran Bahan Bakar pada Sumber Tidak Bergerak	. 53
		5.1.2	Pembakaran Bahan Bakar pada Sumber Bergerak	. 56
	5.2 A	nalisis	dan Pembahasan Sektor Limbah	. 64
		5.2.1	Analisis dan Pembahasan Sektor Limbah Padat	. 64
		5.2.2	Analisis dan Pembahasan Sektor Limbah Cair	. 70
	5.3	Analis	is dan Pembahasan Sektor AFOLU	. 75
		5.3.1	Subsektor Peternakan	. 75
			5.3.1.1 Fermentasi Enterik	. 75
			5.3.1.2 Pengelolaan Ternak	. 76
		5.3.2	Subsektor Pertanian	. 77
			5.3.2.1 Emisi Karbondioksida (CO ₂) dari Budidaya Tanaman Padi	. 77
			5.3.2.2 Emisi Karbondioksida (CO ₂) dari Penggunaan Pupuk Urea	. 78
		5.3.3	Lahan Mangrove Sebagai Penyerap CO ₂	. 80
	5.4	Analis	is dan Pembahasan Sektor IPPU	. 82
		5.4.1	Industri Produsen Keramik	. 82
		5.4.2	Industri Produsen Calcined Petroleum Coke	. 82
		5.4.3	Industri Produsen Glassware	. 83
		5.4.4	Industri Produsen Conveyor Belt dan Rubber Article	. 84
		5.4.5	Industri Produsen <i>Plate</i> Baja	. 85
	5.5	Progra	am Kampung Iklim (PROKLIM) sebagai Adaptasi Dampak Emisi GRK .	. 86
BAB	6 RE	KOME	NDASI UPAYA PENGENDALIAN GAS RUMAH KACA (GRK)	. 88
	6.1	Rekor	nendasi Penurunan GRK Sektor Energi	. 89

	6.2	Rekomendasi Penurunan GRK Sektor Limbah8
	6.3	Rekomendasi Penurunan GRK Sektor AFOLU9
	6.4	Rekomendasi Penurunan GRK Sektor IPPU9
	6.5	Rencana Aksi Daerah (RAD) Penurunan GRK berdasarkan Peraturan Gubernu Jawa Timur Nomor 67 Tahun 20129
		6.5.1 Bidang Energi9
		6.5.2 Bidang IPPU9
		6.5.3 Bidang Pengelolaan Limbah9
		6.5.4 Bidang AFOLU9
	6.6	Rencana Aksi Nasional (RAN) Penurunan GRK berdasarkan Peratura Presiden Nomor 61 Tahun 20119
	6.7	Rekomendasi berdasarkan Peraturan Walikota Kota Surabaya Nomor 36 Tahu 2020 tentang Rencana Kerja Pemerintah Kota Surabaya Tahun 20219
	6.8	Rekomendasi berdasarkan RPJMN 2020-20249
	6.9	Penanaman Pohon Sebagai Agen Pereduksi CO ₂ 9
	6.10	Lahan Mangrove sebagai Simpanan Karbon9
	6.11	Klasifikasi Rencana Aksi Daerah sebagai Kegiatan Inti dan Kegiata Pendukung9
		6.11.1 Rencana Aksi Daerah sebagai Kegiatan Inti9
		6.11.2 Rencana Aksi Daerah sebagai Kegiatan Pendukung10
BAB	7 KES	SIMPULAN DAN SARAN10
	7.1	Kesimpulan10
	7.2	Saran
DAF	TAR P	PUSTAKA10

DAFTAR TABEL

Tabel 1.1 Persentase Emisi GRK Provinsi Jawa Timur Tahun 2010-2012	2
Tabel 1.2 Persentase Emisi GRK Kota Surabaya	3
Tabel 1.3 Jadwal Pelaksanaan Penyusunan Laporan Kajian Inventarisasi GRK	Kota
Surabaya Tahun 2021	9
Tabel 2.1 Kegiatan RAN-GRK Bidang Pertanian	14
Tabel 3.1 Sumber data yang digunakan dalam perhitungan emisi gas rumah kaca	26
Tabel 3.2 Nilai Kalor Bahan Bakar di Indonesia	28
Tabel 3.3 Faktor Emisi dari Pembakaran Bahan Bakar Sumber Stasioner	30
Tabel 3.4 Faktor Emisi Bahan Bakar Sumber Bergerak	31
Tabel 3.5 Faktor Emisi CO ₂ Sumber Bergerak dari Kendaraan Bermotor	31
Tabel 3.6 Faktor Emisi CH_4 dan N_2O Sumber Bergerak dari Kendaraan Bermotor	31
Tabel 3.7 Faktor Emisi Metana dari Fermentasi Enterik	34
Tabel 3.8 Faktor Emisi Metana dari Pengelolaan Ternak	35
Tabel 3.9 Bahan Baku dan Produk untuk Perhitungan Emisi Sektor IPPU	37
Tabel 3.10 Emisi GRK (ton CO ₂ e/ton produk) dari Produksi Karet Primer	41
Tabel 4.1 Sumber Data Perhitungan Sumber Tidak Bergerak	44
Tabel 4.2 Data Konsumsi Bahan Bakar Sumber Bergerak	45
Tabel 4.3 Komposisi Sampah	45
Tabel 4.4 Data Timbulan Sampah Tahun 2020	46
Tabel 4.5 Jumlah Sampah yang Masuk ke TPA Tahun 2020	47
Tabel 4.6 Luas Lahan Pertanian Sawah Menurut Sistem Pengairan di Kota Surabaya	
Tahun 2020	48
Tabel 4.7 Jumlah Konsumsi dan Jenis Pupuk	49
Tabel 4.8 Jumlah Hewan yang Dipotong di Kota Surabaya Tahun 2020	50
Tabel 4.9 Data Populasi Hewan Ternak di Kota Surabaya Tahun 2020	50
Tabel 4.10 Data Bahan Baku dan Produk untuk Perhitungan Emisi Sektor IPPU	51
Tabel 5.1 Emisi dari Penggunaan Batu Bara pada Sumber Tidak Bergerak	58
Tabel 5.2 Emisi dari Penggunaan Gas (m³) pada Sumber Tidak Bergerak	59
Tabel 5.3 Emisi dari Penggunaan Gas (mbtu/mmbtu) pada Sumber Tidak Bergerak	59
Tabel 5.4 Emisi dari Penggunaan Kayu Bakar pada Sumber Tidak Bergerak	60
Tabel 5.5 Emisi dari Penggunaan LPG pada Sumber Tidak Bergerak	61
Tabel 5.6 Emisi dari Pembakaran Bahan Bakar pada Sumber Bergerak	63
Tabel 5.7 Emisi dari Sektor Energi	64
Tabel 5.8 Perhitungan DOC	65

Tabel 5.9 Rekap Produksi Listrik Landfill Gas Power Plant TPA Benowo Surabaya T	ahur
2020	66
Tabel 5.10 Rekap Gas yang Dikonversi ke Energi Listrik Landfill Gas Power Plant TPA	
Benowo Surabaya Tahun 2020	66
Tabel 5.11 Perhitungan Nilai Recovery CH₄	67
Tabel 5.12 Hasil Perhitungan Emisi Gas Metana	69
Tabel 5.13 Jumlah Penduduk dengan Akses Sanitasi Layak di Kota Surabaya Tahun	2020
	70
Tabel 5.14 Hasil Perhitungan TOW	72
Tabel 5.15 Data Default (IPCC 2006 Guidelines) Fraksi Penggunaan Tipe Pengolahan	
Limbah Cair Perkotaan Untuk Berbagai Kategori Masyarakat	73
Tabel 5.16 Fraksi Penggunaan Tipe Pengolahan Limbah Cair di Kota Surabaya	74
Tabel 5.17 Hasil Perhitungan Emisi GRK dari Limbah Cair	74
Tabel 5.18 Potensi Gas Metana di RPH Kota Surabaya	76
Tabel 5.19 Potensi Gas Metana dari Pengelolaan Ternak	76
Tabel 5.20 Jumlah Konsumsi dan Jenis Pupuk	79
Tabel 5.21 Luas Mangrove di Kota Surabaya	80
Tabel 5.22 Hasil Perhitungan Simpanan Karbon Biomassa	
Tabel 5.23 Hasil Perhitungan Emisi CO₂ dari Sektor IPPU	85
Tabel 6.1 Jenis-jenis tanaman dan kemampuan daya serap CO ₂	95
Tabel 6.2 Luas Mangrove di Kota Surabaya	
Tabel 6.3 Hasil Perhitungan Simpanan Karbon Biomassa	98
Tabel 6.4 Rekomendasi Rencana Aksi Kegiatan Inti dan Pelaksana Kegiatan	98
Tabel 6.5 Rekomendasi Rencana Aksi Kegiatan Pendukung dan Pelaksana Kegiatan.	104
Tabel 7.1 Perbandingan Emisi GRK Kota Surabaya Tahun 2018 dan 2020	105

BAB 1

PENDAHULUAN

1.1 Latar Belakang

Dampak perubahan iklim saat ini sudah jelas kita rasakan. Salah satunya adalah frekuensi musim kemarau dan hujan yang tidak menentu. Kenaikan suhu rata-rata permukaan bumi (*global warming*) juga merupakan dampak dari perubahan iklim. Adanya g*lobal warming* bagi masyarakat yang tinggal di daerah pesisir, kenaikan permukaan air laut jelas sangat terlihat dari tahun ke tahun.

Konvensi Perserikatan Bangsa-Bangsa (PBB) tentang Kerangka Kerja Perubahan Iklim (*United Nations Framework Convention on Climate Change*/UNFCCC) mendefinisikan perubahan iklim sebagai perubahan iklim yang disebabkan baik secara langsung atau tidak langsung oleh aktivitas manusia sehingga mengubah komposisi dari atmosfer global dan variabilitas iklim alami pada periode waktu yang dapat diperbandingkan. Komposisi atmosfer global yang dimaksud adalah komposisi material atmosfer bumi berupa Gas Rumah Kaca (GRK) yang di antaranya, terdiri dari karbon dioksida, metana, nitrogen, dan sebagainya. Pada dasarnya, Gas Rumah Kaca dibutuhkan untuk menjaga suhu bumi tetap stabil. Akan tetapi, konsentrasi Gas Rumah kaca yang semakin meningkat membuat lapisan atmosfer semakin tebal. Penebalan lapisan atmosfer tersebut menyebabkan jumlah panas bumi yang terperangkap di atmosfer bumi semakin banyak, sehingga mengakibatkan peningkatan suhu bumi, yang disebut dengan pemanasan global.

Gas rumah kaca (GRK) merupakan gas di atmosfer yang berfungsi menyerap radiasi infra merah dan ikut menentukan suhu atmosfer. Adanya berbagai aktivitas manusia, khususnya sejak era pra-industri emisi gas rumah kaca ke atmosfer mengalami peningkatan yang sangat tinggi sehingga meningkatkan konsentrasi gas rumah kaca di atmosfer. Hal ini menyebabkan timbulnya masalah pemanasan global dan perubahan iklim. Ada enam jenis yang digolongkan sebagai GRK yaitu karbondioksida (CO₂), gas metan (CH₄), dinitrogen oksida (N₂O), sulfurheksafluorida (SF₆), perfluorokarbon (PFCS) dan hidrofluorokarbon (HFCS). Selain itu ada beberapa gas yang juga termasuk dalam GRK yaitu karbonmonoksida (CO), nitrogen oksida (NOX), klorofluorokarbon (CFC), dan gas-gas organik non metal volatile. Gas-gas rumah kaca yang dinyatakan paling berkontribusi terhadap gejala pemanasan global adalah CO₂, CH₄, N₂O, NOX, CO, PFC dan SF₆.

Kontribusi yang Ditetapkan Secara Nasional (NDC) Indonesia terhadap emisi GRK mencakup aspek mitigasi dan adaptasi. Sejalan dengan ketentuan Persetujuan Paris, NDC Indonesia kiranya perlu ditetapkan secara berkala. Pada periode pertama, target NDC Indonesia adalah mengurangi emisi sebesar 29% dengan upaya sendiri dan menjadi 41% jika ada kerja sama internasional dari kondisi tanpa ada aksi (business as usual) pada

tahun 2030, yang akan dicapai antara lain melalui sektor kehutanan, energi termasuk transportasi, limbah, proses industri dan penggunaan produk, dan pertanian. Komitmen NDC Indonesia untuk periode selanjutnya ditetapkan berdasarkan kajian kinerja dan harus menunjukkan peningkatan dari periode selanjutnya. Indonesia berkomitmen dalam penurunan emisi gas rumah kaca dan telah dituangkan dalam Peraturan Presiden (Perpres) Nomor 61 Tahun 2011 tentang Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca (RAN-GRK) serta Peraturan Presiden (Perpres) Nomor 71 Tahun 2011 tentang Inventarisasi GRK. Inventarisasi GRK dilakukan dengan pemantauan dan pengumpulan data aktivitas sumber emisi serta perhitungan emisi dan serapan GRK sehingga diperoleh data mengenai tingkat, status, dan kecenderungan perubahan emisi GRK secara berkala dari berbagai sumber emisi dan penyerapannya termasuk simpanan karbon. Merujuk peraturan tersebut, Pemerintah Provinsi Jawa Timur turut berpartisipasi aktif melalui analisis emisi/serapan GRK secara rutin tiap tahunnya sejak tahun 2010. Tabel 1.1 merupakan persentase emisi GRK Provinsi Jawa Timur.

Tabel 1. 1 Persentase Emisi GRK Provinsi Jawa Timur Tahun 2010-2012

		Persentase Emisi (%)									
No	Tahun	Sektor	Sektor	Sektor	Sektor						
		Energi	IPPU	AFOLU	Limbah						
1	2010	85,27	8,84	4,07	1,83						
2	2011	95,21	1,36	3,17	0,26						
3	2012	99,78	0,14	0,06	0,02						

Sumber : Laporan Kajian Inventarisasi GRK Kota Surabaya Tahun 2016

Sesuai Tabel 1.1 persentase emisi GRK di Jawa Timur pada tahun 2010 di sektor energi 85,27%, sektor *Industrial Process And Product Uses* (IPPU) 8,84%, sektor *Agriculture, Foresty, and Other Land Use* (AFOLU) 4,07%, dan sektor limbah 1,83%. Persentase emisi GRK di Jawa Timur pada tahun 2011 di sektor energi 95,21%, sektor IPPU 1,36%, sektor AFOLU 3,17%, dan sektor limbah 0,26%. Persentase emisi GRK di Jawa Timur pada tahun 2012 di sektor energi adalah 99,78%, sektor IPPU 0,14%, sektor AFOLU 0,06% dan sektor limbah 0,02%. Nilai emisi terbesar berasal dari sektor energi.

Partisipasi dalam pengurangan emisi GRK diikuti oleh Kabupaten/Kota di Provinsi Jawa Timur. Termasuk Kota Surabaya yang telah melakukan inventarisasi emisi gas rumah kaca pada tahun 2016. Berdasarkan kajian inventarisasi gas rumah kaca tahun 2016, diketahui bahwa total emisi GRK Kota Surabaya dari keempat sektor yaitu sebesar 17.699,71378 Gg CO₂. Adapun rincian hasil perhitungan emisi tersebut dari urutan terkecil meliputi sektor AFOLU sebesar 5,65578 Gg CO₂ atau 0,03 %, sektor limbah sebesar

758,49 Gg CO₂ atau 4,29%, sektor IPPU sebesar 5.535,32 Gg CO₂ atau 31,3%, dan sektor energi sebesar 11.391,67 Gg CO₂ atau 64,38%.

Tabel 1. 2 Persentase Emisi GRK Kota Surabaya

No	Tahun	Persentasi Emisi (%)						
110	- CATON	Sektor Energi	Sektor IPPU	Sektor AFOLU	Sektor Limbah			
1	2016	64,38	31,3	0,03	4,29			
2	2019	99,33	0,59	0,03	0,08			

Sumber: Laporan Kajian Inventarisasi GRK Kota Surabaya Tahun 2016 dan Tahun 2019

Berdasakan urgensi dan peraturan diatas, maka Pemerintah Kota Surabaya melakukan Kajian Inventarisasi Gas Rumah Kaca (GRK) Tahun 2021. Hal ini melanjutkan Kajian Inventarisasi Gas Rumah Kaca (GRK) Tahun 2019 namun terdapat perubahan tahun data. Pada kajian ini akan menggunakan data tahun 2020 sehingga menunjukkan kondisi yang saat ini terjadi. Dalam dokumen tersebut nantinya akan dikaji mengenai sumber emisi gas rumah kaca, perhitungan emisi dan serapan gas rumah kaca, serta upaya yang dapat dilakukan untuk mengurangi emisi gas rumah kaca. Dengan adanya Kajian Inventarisasi Gas Rumah Kaca (GRK) tahun 2021 ini diharapkan pemantauan kondisi GRK dapat dilakukan secara berkala dan target penurunan emisi GRK dapat optimal.

1.2 Tujuan dan Sasaran

Kegiatan ini mempunyai tujuan dan sasaran sebagai berikut:

- 1. Maksud dan tujuan kegiatan kajian inventarisasi Gas Rumah Kaca (GRK) Kota Surabaya adalah:
 - Melakukan inventarisasi data sumber emisi dari sektor limbah, IPPU, energi, dan AFOLU skala kota.
 - Melakukan perhitungan emisi dan serapan gas rumah kaca (GRK)
 - Memberikan rekomendasi upaya penanganan terhadap emisi gas rumah kaca.
- 2. Sasaran yang hendak dicapai dalam kegiatan kajian inventarisasi Gas Rumah Kaca (GRK) Kota Surabaya adalah:
 - Inventarisasi emisi gas rumah kaca dapat dijadikan sebagai bahan pembanding inventarisasi di tahun-tahun mendatang.
 - Sebagai bahan pertimbangan untuk pembuatan kebijakan yang terkait dengan strategi dan rencana aksi penurunan emisi di Kota Surabaya.

1.3 Dasar Hukum

Beberapa studi terdahulu atau data dari berbagai sumber dapat digunakan sebagai dasar hukum untuk penyusunan inventarisasi emisi gas rumah kaca ini, baik yang berasal dari pemerintah pusat, provinsi atau kabupaten/kota serta sumber lainnya. Adapun peraturan perundang-undangan yang dapat dijadikan acuan dalam penyusunan kajian ini antara lain:

- Peraturan Presiden Nomor 61 Tahun 2011 tentang Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca (RAN-GRK)
- 2. Peraturan Presiden Nomor 71 Tahun 2011 tentang Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional
- Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.73/MENLHK/SETJEN/KUM.1/12/2017 tentang Pedoman Penyelenggaraan dan Pelaporan Inventarisasi Gas Rumah Kaca Nasional
- Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 22
 Tahun 2019 tentang Pedoman Penyelenggaraan Inventarisasi dan Mitigasi Gas
 Rumah Kaca Bidang Energi
- 5. Undang-undang Republik Indonesia Nomor 11 Tahun 2020 tentang Cipta Kerja
- 6. Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup
- 7. Undang-Undang Nomor 16 Tahun 2016 tentang Pengesahan *Paris Agreement on Climate Change*
- 8. Peraturan Gubernur Jawa Timur Nomor 67 Tahun 2012 tentang Rencana Aksi Daerah Penurunan Emisi Gas Rumah Kaca Provinsi Jawa Timur
- 9. Peraturan Daerah Kota Surabaya Nomor 19 Tahun 2014 tentang Perlindungan Pohon
- Peraturan Daerah Kota Surabaya Nomor 5 Tahun 2014 tentang Pengelolaan Sampah di Kota Surabaya
- 11. Peraturan Walikota Surabaya Nomor 67 Tahun 2018 tentang Kontribusi Sampah dalam Penggunaan Layanan Bus Surabaya
- 12. Instruksi Walikota Surabaya Nomor 1 Tahun 2019 tentang Penghematan Pemakaian Energi Listrik dan Air di Lingkungan Pemerintahan Kota Surabaya

1.4 Ruang Lingkup

Ruang lingkup dari laporan ini meliputi lingkup wilayah dan lingkup kegiatan sebagai berikut:

1. Lingkup Wilayah

Lingkup wilayah inventarisasi emisi meliputi wilayah Kota Surabaya dengan luas wilayah 334,51 km² yang terdiri atas 31 kecamatan dan 154 kelurahan. Batas wilayah

Kota Surabaya sebelah utara dan timur adalah selat Madura, sebelah selatan kabupaten Sidoarjo dan sebelah barat adalah kabupaten Gresik.

2. Lingkup Kegiatan

Adapun ruang lingkup kegiatan Kajian Inventarisasi Gas Rumah Kaca (GRK) di Kota Surabaya adalah sebagai berikut:

a. Tahap Persiapan

Melakukan persiapan yang dibutuhkan untuk inventarisasi gas rumah kaca (GRK) meliputi melakukan studi literatur terkait GRK, penentuan metode yang digunakan, dan penentuan list data yang dibutuhkan

b. Tahap Pengumpulan Data

Melakukan inventarisasi dan kompilasi data yang dibutuhkan dalam perhitungan emisi dan serapan gas rumah kaca (GRK) meliputi sektor *Agriculture, Forestry and Other Land Use* (AFOLU), *Industrial Process and Product Uses* (IPPU), Limbah serta Energi.

c. Tahap Verifikasi Data

Melakukan pengecekan ulang terhadap hasil inventarisasi data GRK, apabila data sudah tersedia dan sesuai format langsung diinput ke dalam persamaan emisi GRK masing-masing sektor.

d. Tahap Analisis Data

Melakukan analisis data untuk perhitungan emisi dan serapan GRK sehingga dapat dilaporkan dan memantau tingkat serta status emisi GRK. Dalam melakukan perhitungan total emisi yang dihasilkan dari sumber emisi GRK ini menggunakan metode *tier* 1 dan IPCC *Guidelines*.

e. Tahap Penentuan Rekomendasi

Tahap penyusunan upaya penanganan yang dapat dilakukan untuk mengatasi emisi GRK berdasarkan kebijakan yang berlaku maupun *best practice* yang pernah dilakukan.

f. Penyusunan Laporan

Melakukan penyusunan laporan Kajian Invetarisasi Gas Rumah Kaca (GRK) di Kota Surabaya.

1.5 Sistematika Penulisan

Penyusunan dokumen Kajian Inventarisasi Gas Rumah Kaca (GRK) Tahun 2021 memiliki sistem penulisan sebagai berikut:

BAB I PENDAHULUAN

1.1 Latar Belakang

- 1.2 Tujuan dan Sasaran
- 1.3 Dasar Hukum
- 1.4 Ruang Lingkup
- 1.5 Sistematika Penulisan
- 1.6 Jadwal Pelaksanaan

BAB II TINJAUAN KEBIJAKAN

- 2.1 Peraturan Presiden Nomo 61 Tahun 2011 tentang Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca
- 2.2 Peraturan Presiden Nomor 71 Tahun 2011 tentang Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional
- 2.3 Peraturan Gubernur Jawa Timur Nomor 67 Tahun 2012 Tentang Rencana Aksi Daerah Penurunan Emisi Gas Rumah Kaca Provinsi Jawa Timur
- 2.4 Rencana Aksi Nasional dan Daerah Penurunan Emisi Gas Rumah Kaca
- 2.5 Undang-Undang Nomor 16 Tahun 2016 tentang Pengesahan Paris Agreement on Climate Change
- 2.6 Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.73/MENLHK/SETJEN/KUM.1/12/2017 tentang Pedoman Penyelenggaraan dan Pelaporan Inventarisasi Gas Rumah Kaca Nasional
- 2.7 Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 22 Tahun 2019 tentang Pedoman Penyelenggaraan Inventarisasi dan Mitigasi Gas Rumah Kaca Bidang Energi
- 2.8 Undang-undang Republik Indonesia Nomor 11 Tahun 2020 tentang Cipta Kerja
- 2.9 Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup
- 2.10 Peraturan Daerah Kota Surabaya Nomor 19 Tahun 2014 tentang Perlindungan Pohon
- 2.11 Peraturan Daerah Kota Surabaya Nomor 5 Tahun 2014 tentang Pengelolaan Sampah di Kota Surabaya
- 2.12 Peraturan Walikota Surabaya Nomor 67 Tahun 2018 tentang Kontribusi Sampah dalam Penggunaan Layanan Bus Surabaya

BAB III METODOLOGI

- 3.1 Sektor Energi
 - 3.1.1 Pembakaran Bahan Bakar pada Sumber Tidak Bergerak
 - 3.1.1.1 Perhitungan Emisi dari Bahan Bakar Berdasarkan Nilai Kalor
 - 3.1.2 Pembakaran Bahan Bakar pada Sumber Bergerak
- 3.2 Sektor Limbah
 - 3.2.1 Sektor Limbah Padat
 - 3.2.2 Sektor Limbah Cair
- 3.3 Sektor AFOLU (Agriculture, Forestry, and Other Land Use)
 - 3.3.1 Subsektor Peternakan
 - 3.3.1.1 Fermentasi Enterik
 - 3.3.1.2 Pengelolaan Ternak
 - 3.3.2 Subsektor Pertanian
 - 3.3.2.1 Emisi Karbondioksida (CO₂) dari Lahan Pertanian
 - 3.3.2.2 Emisi Karbondioksida (CO₂) dari Penggunaan Pupuk Urea
- 3.4 Sektor IPPU (Industrial Process and Product Uses)
 - 3.4.1 Industri Produsen Keramik
 - 3.4.2 Industri Produsen Calcined Petroleum Coke
 - 3.4.3 Industri Produsen Glass ware
 - 3.4.4 Industri Produsen Conveyor Belt dan Rubber Article
 - 3.4.5 Industri Produsen Plate Baja

BAB IV GAMBARAN UMUM

- 4.1 Gambaran Umum Kota Surabaya
- 4.2 Sektor-Sektor Emisi Gas Rumah Kaca Kota Surabaya
 - 4.2.1 Sektor Energi
 - 4.2.2 Sektor Limbah
 - 4.2.2.1 Sektor Limbah Padat
 - 4.2.2.2 Limbah Cair
 - 4.2.3 Sektor AFOLU (Agriculture, Forestry and Other Land Use)
 - 4.2.4 Sektor IPPU (Industrial Process and Product Uses)

BAB V ANALISIS DAN PEMBAHASAN

- 5.1 Analisis dan Pembahasan Sektor Energi
 - 5.1.1 Pembakaran Bahan Bakar pada Sumber Tidak Bergerak
 - 5.1.2 Pembakaran Bahan Bakar pada Sumber Bergerak
- 5.2 Analisis dan Pembahasan Sektor Limbah
 - 5.2.1 Analisis dan Pembahasan Sektor Limbah Padat
 - 5.2.2 Analisis dan Pembahasan Sektor Limbah Cair

- 5.3 Analisis dan Pembahasan Sektor AFOLU
 - 5.3.1 Sub Sektor Peternakan
 - 5.3.1.1 Fermentasi Enterik
 - 5.3.1.2 Pengelolaan Ternak
 - 5.3.2 Sub Sektor Pertanian
 - 5.3.2.1 Emisi Karbondioksida (CO₂) dari Budidaya Tanaman Padi
 - 5.3.2.2 Emisi Karbondioksida (CO₂) dari Penggunaan Pupuk Urea
 - 5.3.3 Lahan Mangrove Sebagai Penyerap CO₂
- 5.4 Analisis dan Pembahasan Sektor IPPU
 - 5.4.1 Industri Produsen Keramik
 - 5.4.2 Industri Produsen Calcined Petroleum Coke
 - 5.4.3 Industri Produsen Glass ware
 - 5.4.4 Industri Produsen Conveyor Belt dan Rubber Article
 - 5.4.5 Industri Produsen Plate Baja
- 5.5 Program Kampung Iklim (PROKLIM) sebagai Adaptasi Dampak Emisi GRK**Error! Bookmark not defined.**

BAB VI REKOMENDASI UPAYA PENURUNAN GRK

- 6.1 Rekomendasi Penurunan GRK Sektor Energi
- 6.2 Rekomendasi Penurunan GRK Sektor Limbah
- 6.3 Rekomendasi Penurunan GRK Sektor AFOLU
- 6.4 Rekomendasi Penurunan GRK Sektor IPPU
- 6.5 Rencana Aksi Daerah (RAD) Penurunan GRK berdasarkan Pergub Jatim No. 67 Tahun 2012
 - 6.5.1 Bidang Energi
 - 6.5.2 Bidang IPPU
 - 6.5.3 Bidang Pengelolaan Limbah
 - 6.5.4 Bidang AFOLU
- 6.6 Rencana Aksi Nasional (RAN) Penurunan GRK berdasarkan Perpres No. 61 Tahun 2011
- 6.7 Rekomendasi berdasarkan Perwali Kota Surabaya No. 36 Tahun 2020 tentang Rencana Kerja Pemerintah Kota Surabaya Tahun 2021
- 6.8 Rekomendasi berdasarkan RPJMN 2020-2024
- 6.9 Penanaman Pohon Sebagai Agen Pereduksi CO₂
- 6.10 Lahan Mangrove sebagai Simpanan Karbon
- 6.11 Klasifikasi Rencana Aksi Daerah sebagai Kegiatan Inti dan Kegiatan Pendukung

- 6.11.1 Rencana Aksi Daerah sebagai Kegiatan Inti
- 6.11.2 Rencana Aksi Daerah sebagai Kegiatan Pendukung

BAB VII KESIMPULAN DAN SARAN

- 7.1 Kesimpulan
- 7.2 Saran

1.6 Jadwal Pelaksanaan

Berikut merupakan jadwal pelaksanaan dari Laporan Kajian Inventarisasi GRK Kota Surabaya Tahun 2021:

Tabel 1.3 Jadwal Pelaksanaan Penyusunan Laporan Kajian Inventarisasi GRK Kota Surabaya Tahun 2021

No	Kegiatan		Bulan														
INO	Regiatari	Juni		Juli			Agustus			IS	September			er			
1	Tahap persiapan																
2	Tahap pengumpulan																
_	data																
3	Tahap analisis data																
4	Tahap penyusunan											•	•			1	
-	laporan																
	Bab 1																
	Bab 2																
	Bab 3																
	Bab 4																
	Bab 5																
	Bab 6																
	Bab 7																
5	FGD																
6	Finalisasi laporan																

BAB 2

TINJAUAN KEBIJAKAN

2.1 Peraturan Presiden Nomor 61 Tahun 2011 tentang Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca

Peraturan Presiden Nomor 61 Tahun 2011 mengatur mengenai rencana aksi ataupun langkah-langkah untuk menurunkan emisi gas rumah kaca (GRK). Rencana aksi nasional penurunan emisi gas rumah kaca (RAN-GRK) adalah dokumen rencana kerja untuk pelaksanaan berbagai kegiatan yang secara langsung dan tidak langsung menurunkan emisi gas rumah kaca sesuai dengan target pembangunan nasional. Selain itu, juga terdapat rencana aksi daerah penurunan emisi gas rumah kaca yang diatur dalam peraturan daerah masing-masing baik dalam lingkup provinsi maupun kabupaten/kota. Adapun kegiatan RAN-GRK meliputi pertanian, kehutanan dan lahan gambut, energi dan transportasi, industri, pengelolaan limbah, serta kegiatan pendukung lain.

Dalam rencana aksi nasional penurunan emisi gas rumah kaca terdapat dua kegiatan yaitu kegiatan inti dan kegiatan pendukung. Kegiatan inti merupakan kegiatan yang berdampak langsung pada penurunan emisi GRK dan penyerapan GRK, sedangkan kegiatan pendukung adalah kegiatan yang tidak berdampak langsung pada penurunan emisi GRK tapi mendukung pelaksanaan kegiatan inti. Rencana aksi nasional penurunan emisi gas rumah kaca (GRK) menjadi acuan dan pedoman dalam melakukan perencanan, pelaksanaan, serta penyusunan rencana aksi daerah penurunan gas rumah kaca baik di tingkat provinsi maupun kabupaten/kota.

2.2 Peraturan Presiden Nomor 71 Tahun 2011 tentang Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional

Peningkatan konsentrasi gas rumah kaca pada atmosfer mengakibatkan perubahan iklim global yang dapat menurunkan kualitas lingkungan hidup. Oleh karena itu, pemerintah pusat, provinsi, dan kabupaten/kota bertugas dan berwenang menyelenggarakan inventarisasi gas rumah kaca. Berdasarkan Peraturan Presiden Nomor 71 Tahun 2011 tentang Penyelenggaraan Inventarisasi Gas Rumah Kaca (GRK) Nasional dijelaskan bahwa inventarisasi gas rumah kaca adalah kegiatan untuk memperoleh data dan informasi mengenai tingkat, status, dan kecenderungan perubahan emisi gas rumah kaca secara berkala dari berbagai sumber emisi (source) dan penyerapnya (sink) termasuk simpanan karbon (carbon stock). Dalam inventarisasi gas rumah kaca, terdapat tiga poin penting yang perlu diperhatikan yaitu emisi, serapan, dan simpanan karbon. Emisi adalah lepasnya GRK

ke atmosfer pada suatu area tertentu dalam jangka waktu tertentu, sedangkan serapan adalah diserapnya GRK dari atmosfer pada suatu area tertentu dalam jangka waktu tertentu, dan simpanan karbon adalah besaran karbon yang terakumulasi dalam tampungan karbon di darat dan laut dalam jangka waktu tertentu.

Penyelenggaraan inventarisasi gas rumah kaca (GRK) dilakukan dengan tujuan sebagai berikut:

- a. Memberikan informasi secara berkala mengenai tingkat, status dan kecenderungan perubahan emisi dan serapan GRK termasuk simpanan karbon di tingkat nasional, provinsi dan kabupaten/kota.
- b. Memberikan informasi pencapaian penurunan emisi GRK dari kegiatan mitigasi perubahan iklim nasional.

Untuk mencapai tujuan tersebut, terdapat proses dan tata cara perhitungan inventarisasi gas rumah kaca (GRK) meliputi:

- a. Pemantauan dan pengumpulan data aktivitas sumber emisi dan serapan GRK termasuk simpanan karbon, serta penetapan faktor emisi dan faktor serapan GRK.
 Adapun aktivis sumber emisi dan serapan GRK terdiri dari
 - Pertanian, kehutanan, lahan gambut, dan penggunaan lahan lainnya.
 - Pengadaan dan penggunaan energi yang mencakup industri, transportasi, rumah tangga, komersial, serta pertanian, konstruksi, dan pertambangan.
 - Proses industri dan penggunaan produk meliputi pengelolaan limbah.
- b. Perhitungan emisi dan serapan GRK termasuk simpanan karbon dilakukan dengan:
 - Menggunakan data aktivitas di masing-masing sumber emisi dan penyerapnya termasuk simpanan karbon.
 - Menggunakan data aktivitas pada tahun yang sama.
 - Menggunakan faktor emisi dan faktor serapan lokal.
- c. Hasil penghitungan emisi dan serapan GRK termasuk simpanan karbon dilaporkan dalam bentuk tingkat dan status emisi GRK.

Dalam penyelenggaraan inventarisasi gas rumah kaca diperlukan verifikasi yang diatur kemudian dalam Peraturan Menteri. Selain itu, dalam Peraturan Presiden No. 71 Tahun 2011 telah diatur pembagian tugas dan wewenang Pemerintah Pusat, Provinsi, dan Kabupaten/Kota. Pemerintah Pusat yaitu Kementerian Lingkungan Hidup dan Kehutanan, Pemerintah Provinsi yaitu Gubernur, dan Pemerintah Kabupaten/Kota yaitu Bupati/Walikota bertugas menyelenggarakan inventarisasi GRK, serta menyusun kecenderungan perubahan emisi dan serapan GRK termasuk simpanan karbon sesuai dengan lingkup tugas dan kewenangannya.

2.3 Peraturan Gubernur Jawa Timur Nomor 67 Tahun 2012 tentang Rencana Aksi Daerah Penurunan Emisi Gas Rumah Kaca Provinsi Jawa Timur

Sesuai dengan kebijakan nasional terhadap dampak dari perubahan iklim sehingga perlu dilakukan upaya penanggulangan melalui mitigasi perubahan iklim. Pada Peraturan Gubernur Jawa Timur No. 67 Tahun 2012, Pemerintah Provinsi Jawa Timur berkomitmen melaksanakan pengurangan emisi gas rumah kaca yang terpadu dengan kegiatan sektor lainnya Berdasarkan hal tersebut, diperlukan pengaturan terkait rencana aksi daerah penurunan emisi gas rumah kaca (RAD-GRK) Jawa Timur.

Rencana Aksi Daerah Penurunan Emisi Gas Rumah Kaca yang selanjutnya disebut RAD-GRK adalah dokumen rencana kerja untuk pelaksanaan berbagai kegiatan yang secara langsung dan tidak langsung menurunkan emisi gas rumah kaca sesuai dengan target pembangunan daerah. RAD-GRK merupakan pedoman bagi SKPD untuk melakukan perencanaan, pelaksanaan, serta monitoring dan evaluasi rencana aksi penurunan emisi GRK. Selain itu, bagi masyarakat dan pelaku usaha digunakan dalam melakukan perencanaan dan pelaksanaan penurunan emisi GRK. Dalam RAD-GRK Provinsi Jawa Timur mengatur mengenai mengenai rencana aksi ataupun langkah-langkah untuk menurunkan emisi gas rumah kaca baik kegiatan inti dan kegiatan pendukung yang dapat dijadikan acuan untuk pemerintah daerah Kabupaten/Kota.

Adapun kebijakan rencana aksi daerah penurunan emisi gas rumah kaca Provinsi Jawa Timur terbagi menjadi enam bidang meliputi kegiatan inti dan kegiatan pendukung sebagai berikut:

a. Bidang Pertanian

Target penurunan emisi sebesar 1,07% atau 1.272.256 ton CO₂e dengan kebijakan yang dilakukan yaitu pemantapan ketahanan pangan daerah dan peningkatan produksi pertanian dengan emisi GRK yang rendah, serta peningkatan kandungan bahan organik tanah.

b. Bidang Kehutanan

Target penurunan emisi sebesar 20,88% atau 24.777.266 ton CO₂e dengan kebijakan yang dilakukan yaitu penurunan emisi GRK sekaligus meningkatkan kenyamanan lingkungan, mencegah bencana, menyerap tenaga kerja dan menambah pendapatan masyarakat dan negara, serta peningkatan produktivitas dan efisiensi produksi hasil hutan dengan emisi serendah mungkin dan mempertahankan stock karbon hingga mengabsorbsi CO₂ secara optimal.

c. Bidang Energi dan Transportasi

Target penurunan emisi sebesar 5,22% atau 6.190.738,9 ton CO₂e dengan kebijakan yang dilakukan yaitu:

Peningkatan penghematan energi.

- Penggunaan bahan bakar yang lebih bersih (*fuel switching*).
- Peningkatan penggunaan energi baru dan terbarukan (EBT).
- Pemanfaatan teknologi bersih baik untuk pembangkit listrik dan sarana transportasi.
- Pengembangan transportasi massal yang berkelanjutan.

d. Bidang Industri

Target penurunan emisi sebesar 0,06% atau 20.005,06 ton CO₂e dengan kebijakan yang dilakukan yaitu peningkatan pertumbuhan industri kecil dan menengah yang menerapkan Produksi Bersih (*Clean Production*).

e. Bidang Pengelolaan Limbah

Target penurunan emisi sebesar 1,50% atau 1.776.149 ton CO₂e dengan kebijakan yang dilakukan yaitu:

- Penurunan emisi GRK dari Tempat Pemrosesan Akhir (TPA) limbah padat/sampah.
- Peningkatan pengelolaan limbah cair domestik.
- Peningkatan pengelolaan limbah industri yang berpotensi menghasilkan GRK.
- Pengembangan teknologi pengelolaan limbah dan efisiensi produksi limbah dengan prinsip-prinsip daur ulang (*Reuse, Reduce, Recycle*).
- Pengembangan sistem manajemen pengelolaan limbah industri, limbah domestik dan sektor lainnya.

2.4 Rencana Aksi Nasional dan Daerah Penurunan Emisi Gas Rumah Kaca

Subbab ini akan menjabarkan tentang rencana aksi nasional yang kemudian dapat dijadikan referensi dalam memutuskan rekomendasi rencana aksi daerah (kota) untuk menurunkan emisi gas rumah kaca. Pedoman kegiatan rencana aksi didasarkan pada dokumen Rencana Aksi Nasional Penurunan Emisi Gas Rumah Kaca yang selanjutnya disebut RAN-GRK. Dokumen ini adalah rencana kerja untuk pelaksanaan berbagai kegiatan baik langsung maupun tidak langsung guna menurunkan emisi gas rumah kaca sesuai dengan target pembangunan nasional. RAN-GRK juga sebagai pedoman pemerintah daerah dalam penyusuan Rencana Aksi Daerah Penurunan Emisi Gas Rumah Kaca (RAD-GRK). Secara umum kegiatan RAN-GRK meliputi bidang:

- 1. Pertanian
- 2. Kehutanan dan lahan gambut
- 3. Energi dan transportasi
- 4. Industri
- 5. Pengelolaan limbah

6. Kegiatan pendukung lainnya

Dari bidang-bidang tersebut, akan dikaji relevansinya dengan kondisi yang ada di Kota Surabaya. Sebagai contoh, bisa jadi tidak ada rekomendasi kebijakan mengenai kehutanan dan lahan gambut mengingat daerah Surabaya yang merupakan perkotaan besar. Kegiatan inti pada kajian ini adalah sektor energi, sektor AFOLU, sektor IPPU, dan sektor limbah. Kegiatan pendukung berupa perhitungan reduksi emisi GRK pada lahan mangrove yang dijelaskan lebih lanjut pada Bab 6.

Pada Tabel 2.1 sampai dengan Tabel 2.5 dijelaskan intisari kegiatan inti RAN-GRK di berbagai bidang kegiatan.

Tabel 2.1 Kegiatan RAN-GRK Bidang Pertanian

Bidar	Bidang Pertanian							
Targe	Target penurunan emisi (26%) : 0,008 Giga Ton CO₂e							
Targe	Target penurunan emisi (41%) : 0,011 Giga ton CO₂e							
No	Rencana Aksi	Kegiatan/Sasaran						
1	Perbaikan dan pemeliharaan jaringan irigasi	Terlaksananya perbaikan jaringan irigasi. Terlaksananya operasionalisasi dan pemeliharaan jaringan irigasi.						
2	Optimalisasi lahan	Terlaksananya pengelolaan lahan pertanian tanaman pertanian tanpa bakar.						
3	Penerapan teknologi budidaya tanaman	Terlaksananya penggunaan teknologi untuk melindungin tanaman pangan dari gangguan organisme pengganggu tanaman dan dampak perubhaan iklim.						
4	Pemanfaatan pupuk organik dan bio- pestisida	Terlaksananya pemanfaatan pupuk oganik dan biopestisida.						
5	Pengembangan areal perkebunan (sawit, karet, kakao) di lahan tidak berhutan/lahan terlantar/lahan terdegradasi/area penggunaan lain	Terlaksananya pengembangan areal perkebunan dan peningkatan produksi dan produktivitas, serta mutu tanaman tahunan dengan sasaran kelapa sawit dan karet. Terlaksananya pengembangan areal perkebunan dan peningkatan produksi dan produktivitas, serta mutu tanaman rempah dan penyegar dengan sasaran kakao.						
6	Pemanfaatan kotoran/ <i>urine</i> ternak dan limbah pertanian untuk biogas	Terlaksananya pengembangan dan pembinaan biogas di wilayah terpencil dan padat ternak.						

Sumber: Peraturan Presiden Republik Indonesia Nomor 61 Tahun 2011

Tabel 2.1 Kegiatan RAN-GRK Bidang Kehutanan dan Lahan Gambut

Bidang Kehutanan dan lahan Gambut Target penurunan emisi (26%): 0,672 Giga Ton CO2e Target penurunan emisi (41%): 1,039 Giga ton CO₂e No Rencana Aksi Kegiatan/Sasaran Pembangunan 1 kesatuan Terbentuknya KPH sebanyak 120 unit. pengelolaan hutan Terlaksananya pemberian Izin Usaha Pemanfaatan Hasil Hutan Perencanaan Kayu – Hutan Alam/Restorasi Ekosistem pada aeral bekas pemanfaatan dan 2 tebangan. peningkatan usaha Tercapainya peningkatan produksi hasil hutan buka kayu/jasa kawasan hutan lingkungan. Terlaksananya demonstration activity Reducing Emission from Pengembangan 3 pemanfaatan jasa Deforestation and Degradation (REDD) di kawasan konservasi lingkungan (hutan gambut). Pengukuhan 4 Terlaksananya penataan Batas Kawasan Hutan. kawasan hutan Peningkatan, rehabilitasi, operasi, Terlaksananya peningkatan jaringan reklamasi rawa. dan pemeliharaan 5 Terlaksananya operasi dan pemeliharaan jaringan reklamasi jaringan reklamasi rawa. rawa (termasuk lahan bergambut) Pengelolaan lahan gambut untuk Penelitian dan pengembangan sumber daya lahan (termasuk 6 pertanian lahan gambut). berkelanjutan Pengembangan pengelolaan lahan pertanian di lahan gambut terlantar dan Rehabilitasi, reklamasi, dan revitalisasi lahan gambut terlantar, terdegradasi untuk 7 terdegradasi, pada areal pertanian, serta optimalisasi lahan non mendukung tanaman pangan. subsektor perkebunan, peternakan dan hortikultura 8 Penyelenggaraan Terlaksananya rehabilitasi hutan pada DAS prioritas.

Bidang Kehutanan dan lahan Gambut					
Targ	Target penurunan emisi (26%) : 0,672 Giga Ton CO ₂ e				
Targ	Target penurunan emisi (41%) : 1,039 Giga ton CO₂e				
No	Rencana Aksi	Kegiatan/Sasaran			
	rehabilitasi hutan	Terlaksananya rehabilitasi lahan kritis pada DAS prioritas.			
	dan lahan, dan	Pembuatan hutan kota.			
	reklamasi hutan di	Rehabilitasi hutan mangrove/hutan pantai.			
	DAS prioritas				
		Terfasilitasinya penetapan areal kerja pengelolaan Hutan			
9	Pengembangan	Kemasyarakatan.			
9	perhutanan sosial	Terfasilitasinya pembentukan kemitraan usaha dalam hutan			
		rakyat.			
10	Pengendalian	Tercapainya penurunan jumlah hotspot di Pulau Kalimantan,			
10	kebakaran hutan	Pulau Sumatera, dan Pulau Sulawesi.			
11	Penyidikan dan	Terselesaikannya penanganan kasus baru tindak pidana			
''	pengamanan hutan	kehutanan (illegal loging, penambangan ilegal dan kebakaran).			
	Pengembangan	Meningkatnya pengelolaan ekosistem esensial sebagai			
	kawasan konservasi,	penyangga kehidupan.			
12	ekosistem esensial				
	dan pembinaan	Terlaksananya penanganan perambahan kawasan hutan konservasi dan hutan lindung.			
	hutan lindung	konservasi dan nutan indung.			
13	Peningkatan usaha	Terlaksananya pencadangan areal hutan tanaman industri dan			
13	hutan tanaman	hutan tanaman rakyat.			

Sumber : Peraturan Presiden Republik Indonesia Nomor 61 Tahun 2011

Tabel 2.2 Kegiatan RAN-GRK Bidang Energi dan Transportasi

Bidang Energi dan Transportasi				
Target penurunan emisi (26%) : 0,038 Giga Ton CO₂e				
Target penurunan emisi (41%) : 0,056 Giga ton CO ₂ e				
No	Rencana Aksi	Kegiatan/Sasaran		
1	Penerapan mandatori	Menerapkan manajemen energi pada 200 perusahaan.		
	manajemen energi untuk			
	pengguna padat energi			
	Penerapan program kemitraan konservasi energi	Melakukan program kemitraan konservasi energi		
		bersama swasta/masyarakat pada 1.003 obyek gedung		
2		dan industri.		
2		Melakukan program kemitraan konservasi energi		
		bersama swasta/masyarakat pada 300 obyek gedung		
		dan industri.		
3	Peningkatan efisiensi	Terlaksananya implementasi teknologi hemat energi pada		

Bidang Energi dan Transportasi

Target penurunan emisi (26%) : 0,038 Giga Ton CO₂e
Target penurunan emisi (41%) : 0,056 Giga ton CO₂e

Target penurunan emisi (41%) : 0,056 Giga ton CO ₂ e			
No	Rencana Aksi	Kegiatan/Sasaran	
	peralatan rumah tangga	peralatan rumah tangga.	
4	Penyediaan dan pengelolaan energi baru terbarukan dan konservasi energi Pemanfaatan biogas	Terlaksananya pembangunan Pembangkit Listrik Tenaga Micro Hydro (PLTMH), Pembangkit Listrik Tenaga Mini Hydro (PLTM), Pembangkit Listrik Tenaga Surya (PLTS), Pembangkit Listrik Tenaga Bayu (PLTB), Pembangkit Listrik Tenaga Biomassa, Desa Mandiri Energi. Terlaksananya pembuatan unit biogas di seluruh provinsi.	
		Terlaksananya penggunaan gas alam sebagai bahan	
6	Penggunaan gas alam sebagai bahan bakar angkutan umum perkotaan	bakar angkutan umum perkotaan, terutama di kota besar termasuk Surabaya, yaitu sejumlah 29,33 MMSCFD (Million Metric Standard Cubic Feet per Day) di tahuan 2010-2014.	
7	Peningkatan sambungan rumah yang teraliri gas bumi melalui pipa	Meningkatkan penggunaan gas yang dipakai oleh rumah tangga.	
8	Pembangunan kilang <i>mini</i> plant Liquid Petroleum Gas (LPG)	Terlaksananya pembangunan kilang <i>mini plant</i> LPG di Sumatera.	
9	Reklamasi lahan tambang	Penanaman pohon pada lahan di seluruh provinsi.	
10	Pembangunan ITS (Intelligent Transport System)	Pembangunan ITS sebanyak 13 paket untuk mengurangi kemacetan lalu lintas dengan koordinasi simpang, meningkatkan koordinasi antar simpang, memberikan sistem prioritas bus di persimpangan, moda <i>shift</i> dari kendaraan pribadi ke transportasi massal.	
11	Penerapan pengendalian dampak lalu lintas	Penerapan pengendalian dampak lalu lintas sebanyak 12 paket.	
12	Penerapan manajemen parkir	Penerapan manajemen parkir di 12 kota untuk mengurangi moda <i>share</i> di pusat kota, mengurangi penggunaan kendaraan pribadi.	
13	Penerapan Congestion Charging dan Road Pricing yang dikombinasikan dengan angkutan umum massal	Penerapan Congestion Charging dan Road Pricing di 2 kota (Jakarta, Surabaya) untuk mengurangi moda share mobil di pusat kota, mengurangi kemacetan di area pembatasan lalu lintas.	
	Reformasi Sistem Transit –	Terlaksananya pengadaan dan distribusi BRT sebanyak	

Bidang Energi dan Transportasi Target penurunan emisi (26%): 0,038 Giga Ton CO2e Target penurunan emisi (41%): 0,056 Giga ton CO₂e No Rencana Aksi Kegiatan/Sasaran Bus Rapid Transit (BRT) 43 bus/tahun. Terlaksananya peremajaan armada angkutan umum Peremajaan armada 15 sesuai desain standar yang rendah emisi sebanyak 6.000 angkutan umum unit. Terpasangnya converter kit pada taksi dan angkutan kota Pemasangan converter kit 16 yang menggunakan bensin untuk menurunkan emisi CO₂ (gasifikasi angkutan umum) hingga 25% sebanyak 1.000 unit per tahun. Pelatihan dan sosialisasi Terlaksananya pelatihan dan sosialisasi smart driving 17 smart driving untuk 50.000 orang/tahun. Membangun Non-Motorized Transport 18 Terbangunnya non-motorized transport di 12 kota. (pedestrian dan jalur sepeda) Pengembangan KA Mengembangkan KA perkotaan Bandung sepanjang 42 19 perkotaan Bandung km (jalur ganda dan elektrifikasi). Pembangunan double-20 Membangun double-double track sepanjang 35 km. double track Pengadaan KRL baru sejumlah: 1.024 unit untuk Pengadaan Kereta Rel melayani wilayah Jabodetabek, 640 unit untuk melayani 21 Listrik (KRL) baru Jawa Timur sepanjang 410 km dan 256 unit untuk melayani Jawa Barat sepanjang 150 km. Modifikasi Kereta Rel Terlaksananya modifikasi 25 unit KRD menjadi KRDE 22 Diesel menjadi Kereta Rel dengan prediksi pengurangan konsumsi BBM sebesar Diesel Elektrik (KRDE) 198 liter per km. Pembangunan Mass Rapid Terbangunnya MRT tahap I sepanjang 15,1 km dan 23 Transit (MRT) Jakarta tahap II sepanjang 8,2 km. Terbangunnya jalur KA Bandara Soekarno Hatta Pembangunan jalur KA 24 Bandara Soekarno Hatta sepanjang 33 km. Terlaksananya pembangunan monorail Jakarta Pembangunan monorail 25 sepanjang 12,2 km untuk Blue Line dan 14,8 km untuk Jakarta Green Line. Peningkatan kapasitas jalan nasional sepanjang 19.370

168.999 km.

Sumber : Peraturan Presiden Republik Indonesia Nomor 61 Tahun 2011

Pembangunan/peningkatan

dan preservasi jalan

26

km dan penerapan preservasi jalan nasional sepanjang

Tabel 2.3 Kegiatan RAN-GRK Bidang Industri

Bidang Industri			
Target penurunan emisi (26%) : 0,001 Giga Ton CO ₂ e			
Target penurunan emisi (41%) : 0,005 Giga ton CO₂e			
No	Rencana Aksi	Kegiatan/Sasaran	
1	Penerapan modifikasi proses dan teknologi	Tersusunnya pedoman penggunaan biomass dan teknologi lainnya pada industri semen sebagai blended cement.	
2	Konservasi dan audit energi	Terbentuknya sistem manajemen energi di 9 perusahaan industri semen, 35 perusahaan baja dan 5 <i>pulp</i> kertas. Terbentuknya sistem manajemen energi di perusahaan industri gelas dan keramik, pupuk, petrokimia, makanan dan minuman, tekstil dan kimia dasar.	
3	Penghapusan Bahan Perusak Ozon (BPO)	Penghapusan BPO pada 4 sektor (<i>refrigerant, foam, chiller</i> , dan pemadam api).	

Sumber: Peraturan Presiden Republik Indonesia Nomor 61 Tahun 2011

Tabel 2.4 Kegiatan RAN-GRK Bidang Pengelolaan Limbah

Bidang Pengelolaan Limbah			
Target penurunan emisi (26%) : 0,048 Giga Ton CO₂e			
Target penurunan emisi (41%) : 0,078 Giga ton CO ₂ e			
No	Rencana Aksi	Kegiatan/Sasaran	
1	Pembangunan sarana	Tersedianya sistem pengelolaan air limbah sistem terpusat	
	prasarana air limbah	skala kota (<i>off-site</i>) di 16 kabupaten/kota, tersedianya	
	dengan sistem on-site	sistem pengelolaan air limbah skala setempat (on-site) di	
	dan <i>off-site</i>	11.000 lokasi.	
2	Pembangungan Tempat		
	Pemrosesan Akhir (TPA)	Meningkatnya pengelolaan TPA di 210 lokasi,	
	dan pengelolaan sampah	meningkatnya pengelolaan sampah melalui program	
	terpadu Reduce, Reuse,	pengelolaan sampah terpadu pola 3R di 250 lokasi.	
	Recycle (3R)		

Sumber: Peraturan Presiden Republik Indonesia Nomor 61 Tahun 2011

2.5 Undang-Undang Nomor 16 Tahun 2016 tentang Pengesahan Paris Agreement on Climate Change

Persetujuan Paris merupakan perjanjian internasional tentang perubahan iklim yang bertujuan untuk menahan kenaikan suhu rata-rata global di bawah 2°C di atas tingkat di masa pra-industrialisasi dan melanjutkan upaya untuk menekan kenaikan suhu ke 1,5°C di atas tingkat pra-industrialisasi. Selain itu, Persetujuan Paris atas Konvensi Kerangka Kerja

Perserikatan Bangsa-Bangsa mengenai Perubahan Iklim yang selanjutnya disebut Persetujuan Paris diarahkan untuk meningkatkan kemampuan adaptasi terhadap dampak negatif perubahan iklim, menuju ketahanan iklim dan pembangunan rendah emisi, tanpa mengancam produksi pangan, dan menyiapkan skema pendanaan untuk menuju pembangunan rendah emisi dan berketahanan iklim. Pemerintah Indonesia telah menandatangani *Paris Agreement to the United Nations Framework Convention on Climate Change* (Persetujuan Paris atas Konvensi Kerangka Kerja Perserikatan Bangsa-Bangsa mengenai Perubahan Iklim) pada tanggal 22 April 2016 di New York, Amerika Serikat.

Dalam rangka mencapai tujuan Persetujuan Paris, kontribusi nasional terhadap upaya global yang dituangkan dalam kontribusi yang ditetapkan secara nasional, semua negara pihak melaksanakan dan mengomunikasikan upaya ambisiusnya dan menunjukkan kemajuan dari waktu ke waktu, yang terkait dengan kontribusi yang ditetapkan secara nasional (mitigasi), adaptasi, dan dukungan pendanaan, teknologi dan pengembangan kapasitas bagi negara berkembang oleh negara maju.

Kontribusi yang ditetapkan secara nasional atau *Nationally Determined Contributions* (NDC) Indonesia mencakup aspek mitigasi dan adaptasi. Sejalan dengan ketentuan Persetujuan Paris, NDC Indonesia kiranya perlu ditetapkan secara berkala. Pada periode pertama, target NDC Indonesia adalah mengurangi emisi sebesar 29% dengan upaya sendiri dan menjadi 41% jika ada kerja sama internasional dari kondisi tanpa ada aksi (*business as usual*) pada tahun 2030, yang akan dicapai antara lain melalui sektor kehutanan, energi termasuk transportasi, limbah, proses industri dan penggunaan produk, dan pertanian. Komitmen NDC Indonesia untuk periode selanjutnya ditetapkan berdasarkan kajian kinerja dan harus menunjukkan peningkatan dari periode selanjutnya.

2.6 Peraturan Menteri Lingkungan Hidup dan Kehutanan Republik Indonesia Nomor P.73/MENLHK/SETJEN/KUM.1/12/2017 tentang Pedoman Penyelenggaraan dan Pelaporan Inventarisasi Gas Rumah Kaca Nasional

Penyelenggaraan inventarisasi GRK merupakan suatu proses yang berkesinambungan untuk memperoleh data dan informasi mengenai tingkat, status, dan kecenderungan perubahan emisi GRK secara berkala dari berbagai sumber emisi dan penyerapnya. Pedoman Penyelenggaran dan Pelaporan Inventarisasi GRK dimaksudkan untuk memberikan acuan dalam penyelenggaraan inventarisasi emisi GRK di tingkat nasional, daerah provinsi dan/atau daerah kabupaten/kota. Pedoman Penyelenggaraan dan Pelaporan Inventarisasi GRK bertujuan untuk terselenggaranya pelaksanaan dan/atau pengkoordinasian inventarisasi GRK di tingkat nasional dan daerah provinsi dan daerah kabupaten/kota yang dapat dipercaya, akurat, konsisten, dan berkelanjutan, terdiri atas :

a. penggunaan metodologi yang diakui internasional;

- b. penghitungan/estimasi emisi GRK;
- c. penyusunan dokumen tingkat, status, dan kecenderungan perubahan emisi GRK; dan
- d. pelaporan tingkat, status, dan kecenderungan perubahan emisi GRK.

2.7 Peraturan Menteri Energi dan Sumber Daya Mineral Republik Indonesia Nomor 22 Tahun 2019 tentang Pedoman Penyelenggaraan Inventarisasi dan Mitigasi Gas Rumah Kaca Bidang Energi

Inventarisasi GRK bidang energi dilakukan untuk memperoleh data dan informasi mengenai:

- a. Tingkat emisi GRK;
- b. Status emisi GRK; dan
- c. Kecenderungan perubahan emisi GRK,

secara berkala dari berbagai sumber emisi dan penyerapnya pada kegiatan pengadaan/penyediaan dan penggunaan energi. Inventarisasi GRK bidang energi dilakukan melalui kegiatan :

- a. Pemantauan dan pengumpulan data aktivitas sumber emisi GRK bidang energi;
- b. Pengumpulan data dan penghitungan faktor emsi;
- c. Penetapan faktor emisi GRK bidang energi;
- d. Penghitungan emisi GRK bidang energi; dan
- e. Pelaporan hasil kegiatan inventarisasi GRK bidang energi.

2.8 Undang-Undang Republik Indonesia Nomor 11 Tahun 2020 tentang Cipta Kerja

Cipta Kerja adalah upaya penciptaan kerja melalui usaha kemudahan, perlindungan, dan pemberdayaan koperasi dan usaha mikro, kecil, dan menengah, peningkatan ekosistem investasi dan kemudahan berusaha, dan investasi Pemerintah Pusat dan percepatan proyek strategis nasional. Dalam pelindungan dan pengelolaan lingkungan hidup, pemerintah provinsi sesuai dengan norma, standar, prosedur, dan kriteria yang ditetapkan oleh pemerintah pusat bertugas dan berwenang dalam menyelenggarakan inventarisasi sumber daya alam nasional dan emisi gas rumah kaca pada tingkat kabupaten/kota.

Undang-Undang Cipta Kerja dibentuk dengan tujuan untuk:

a. menciptakan dan meningkatkan lapangan kerja dengan memberikan kemudahan, pelindungan, dan pemberdayaan terhadap koperasi dan UMKM serta industri dan perdagangan nasional sebagai upaya untuk dapat menyerap tenaga kerja Indonesia yang seluas-luasnya dengan tetap memperhatikan keseimbangan dan kemajuan antardaerah dalam kesatuan ekonomi nasional;

- b. menjamin setiap warga negara memperoleh pekerjaan, serta mendapat imbalan dan perlakuan yang adil dan layak dalam hubungan kerja;
- c. melakukan penyesuaian berbagai aspek pengaturan yang berkaitan dengan keberpihakan, penguatan, dan perlindungan bagi koperasi dan UMKM serta industri nasional; dan
- d. melakukan penyesuaian berbagai aspek pengaturan yang berkaitan dengan peningkatan ekosistem investasi, kemudahan dan percepatan proyek strategis nasional yang berorientasi pada kepentingan nasional yang berlandaskan pada ilmu pengetahuan dan teknologi nasional dengan berpedoman pada haluan ideologi Pancasila.

2.9 Peraturan Pemerintah Republik Indonesia Nomor 22 Tahun 2021 tentang Penyelenggaraan Perlindungan dan Pengelolaan Lingkungan Hidup

Perlindungan dan Pengelolaan Lingkungan Hidup adalah upaya sistematis dan terpadu yang dilakukan untuk melestarikan fungsi lingkungan hidup dan mencegah terjadinya pencemaran dan/atau kerusakan lingkungan hidup yang meliputi perencanaan, pemanfaatan, pengendalian, pemeliharaan, pengawasan, dan penegakan hukum. Pada pasal 156 ayat 3 dijelaskan bahwa menteri, gubernur, atau bupati/walikota sesuai dengan kewenangannya melakukan pemeliharaan mutu air melalui upaya pengendalian perubahan iklim. Pengendalian perubahan iklim dilakukan melalui pengelolaan air limbah untuk memitigasi pelepasan emisi gas rumah kaca. Yang dimaksud dengan "memitigasi pelepasan emisi gas rumah kaca" adalah upaya untuk menekan atau menghindari pelepasan emisi gas rumah kaca yang dihasilkan oleh air limbah. Senyawa gas rumah kaca dari air limbah bersumber dari senyawa organik yang terkandung dalam air limbah, berupa karbon dioksida (CO₂) dan metana (CH₄).

2.10 Peraturan Daerah Kota Surabaya Nomor 19 Tahun 2014 tentang Perlindungan Pohon

Perlindungan Pohon adalah upaya sistematis dan terpadu yang dilakukan untuk melestarikan dan mempertahankan fungsi pohon. Tujuan penyelenggaraan perlindungan pohon di daerah yaitu :

- a. mencegah dan membatasi kerusakan pohon yang disebabkan oleh perbuatan manusia, daya alam, hama dan penyakit serta sebab lainnya yang dapat mengakibatkan kerusakan atau kematian pohon;
- b. menjaga keberadaan dan kelestarian pohon di daerah; dan
- c. menciptakan keselamatan bagi kepentingan umum.

Penyelenggaraan perlindungan pohon di daerah dilakukan oleh pemerintah daerah dan masyarakat. Pemerintah daerah menyelenggarakan perlindungan pohon di daerah, kecuali terhadap area yang menjadi milik atau dikuasai orang/badan. Masyarakat berperan serta dalam penyelenggaraan perlindungan pohon pada area yang menjadi milik atau dikuasai oleh masyarakat yang bersangkutan dan/atau area yang dimiliki atau dikuasai oleh pemerintah daerah. Pelaksanaan penyelenggaraan perlindungan pohon di daerah yang dilakukan bersama-sama antara pemerintah daerah dengan masyarakat dilakukan secara terkoordinasi oleh walikota atau pejabat yang ditunjuk. Dalam rangka penyelenggaraan perlindungan pohon, pemerintah daerah melakukan pendataan jumlah dan jenis pohon yang ada di daerah. Peraturan perlindungan pohon sejalan dengan upaya penurunan emisi gas rumah kaca. Pohon dapat menyerap CO_2 di udara sehingga dapat mengurangi emisi akibat CO_2 .

2.11 Peraturan Daerah Kota Surabaya Nomor 5 Tahun 2014 tentang Pengelolaan Sampah di Kota Surabaya

Pengelolaan sampah diselenggarakan berdasarkan asas tanggung jawab, asas berkelanjutan, asas manfaat, asas keadilan, asas kesadaran, asas kebersamaan, asas keselamatan, asas keamanan dan asas nilai ekonomi. Pengelolaan sampah bertujuan untuk meningkatkan kesehatan masyarakat dan kualitas lingkungan serta menjadikan sampah sebagai sumber daya. Penyelenggaraan pengelolaan sampah meliputi pengurangan sampah dan penanganan sampah. Pengurangan sampah dilakukan dengan pembatasan timbulan sampah, pendaur ulangan sampah, dan pemanfaatan kembali sampah. Penanganan sampah meliputi kegiatan pemilahan, pengumpulan, pengangkutan, pengolahan, dan pemrosesan akhir sampah. Pemilahan sampah dilakukan oleh :

- a. setiap orang pada sumbernya;
- b. pengelola kawasan permukiman, kawasan komersial, kawasan industri, kawasan khusus, fasilitas umum, fasilitas sosial, dan fasilitas lainnya; dan
- c. pemerintah daerah.

Pemilahan sebagaimana dilakukan melalui kegiatan pengelompokan sampah menjadi paling sedikit 5 (lima) jenis sampah yang terdiri atas :

- a. sampah yang mengandung bahan berbahaya dan beracun serta limbah bahan berbahaya dan beracun;
- b. sampah yang mudah terurai;
- c. sampah yang dapat digunakan kembali;
- d. sampah yang dapat didaur ulang; dan
- e. sampah lainnya.

Pengumpulan sampah dilakukan oleh pengelola kawasan permukiman, kawasan komersial, kawasan industri, kawasan khusus, fasilitas umum, fasilitas sosial, dan fasilitas lainnya dan pemerintah daerah. Pengangkutan sampah dilakukan oleh pemerintah daerah dan lembaga pengelola yang dibentuk oleh masyarakat. Pemrosesan akhir sampah dilakukan dengan metode lahan urug saniter dan/atau teknologi ramah lingkungan.

2.12 Peraturan Walikota Surabaya Nomor 67 Tahun 2018 tentang Kontribusi Sampah dalam Penggunaan Layanan Bus Surabaya

Tata cara kontribusi sampah dalam penggunaan layanan Bus Surabaya adalah sebagai berikut :

- 1. Setiap calon penumpang Bus Surabaya harus menyerahkan sampah untuk mendapatkan layanan Bus Surabaya.
- 2. Penyerahan sampah ditukar dengan sejumlah poin yang dapat dipergunakan untuk mendapatkan layanan Bus Surabaya.
- 3. Poin yang didapat akan diberikan untuk sampah dengan jumlah:
 - a. 3 (tiga) buah botol plastik bekas ukuran besar (kapasitas > 1000 mL);
 - 5 (lima) buah botol plastik bekas ukuran sedang (kapasitas s/d 1000 mL);
 atau
 - c. 10 (sepuluh) buah gelas plastik air kemasan bekas.

Calon penumpang Bus Surabaya menyerahkan sampah dengan jumlah sesuai dengan ketentuan kepada petugas dinas. Apabila sampah yang diserahkan calon penumpang Bus Surabaya jumlahnya telah sesuai ketentuan, maka petugas dinas memberikan Kartu Setor Sampah kepada calon penumpang tersebut. Kartu Setor Sampah diserahkan kepada petugas Dinas Perhubungan sebagai syarat untuk mendapatkan layanan bus milik Pemerintah Kota Surabaya. Petugas Dinas Perhubungan berdasarkan Kartu Setor Sampah memberikan tiket *print out* yang berlaku dalam durasi tertentu kepada penumpang Bus Surabaya tersebut.

BAB 3

METODOLOGI

Inventarisasi emisi gas rumah kaca pada tahun 2021 dilakukan dengan analisis data tahun 2020 pada empat sektor yaitu sektor energi, sektor limbah, sektor IPPU, dan sektor AFOLU. Data tersebut dianalisis menggunakan metode *Tier* 1. *Tier* 1 adalah metode perhitungan emisi dan serapan menggunakan persamaan dasar dan faktor emisi *default* dari IPCC. Terdapat 3 *tier* (tingkat ketelitian) dalam memperkirakan emisi gas rumah kaca. *Tier* 1 dirancanga untuk perhitungan yang sederhana, faktor-faktor emisi sudah tersedia dan dapat digunakan. *Tier* 2 menggunakan faktor-faktor emisi spesifik negara atau wilayah. Faktor-faktor emisi spesifik negara lebih sesuai untuk iklim wilayah, penggunaan lahan, dan kategori ternak di negara tersebut. *Tier* 3 merupakan metode-metode orde tinggi, termasuk model-model dan sistem-sistem pengukuran inventarisasi yang dibuat untuk mengatasi keadaan nasional, diulangi dari waktu ke waktu, dan didorong oleh adanya data aktivitas dengan resolusi tinggi dan dikelompokkan pada tingkat sub-nasional. Metode-metode yang lebih tinggi memberikan perkiraan dengan kepastian yang lebih besar dibandingkan dengan *tier* yang lebih rendah (Kementerian Lingkungan Hidup, 2012).

Intergovernmental Panel on Climate Change (IPCC) adalah badan Perserikatan Bangsa-Bangsa untuk menilai ilmu yang terkait dengan perubahan iklim. IPCC dibuat untuk memberikan penilaian ilmiah rutin kepada pembuat kebijakan tentang perubahan iklim, implikasinya, dan potensi risiko di masa depan, serta untuk mengedepankan opsi adaptasi dan mitigasi. IPCC mengeluarkan pedoman yang membantu perhitungan emisi beberapa sektor GRK. Pedoman yang dikerluarkan IPCC berisi data faktor emisi dan formulasi perhitungan emisi.

Penjelasan mengenai keempat sektor GRK dapat dijabarkan di bawah ini. Adapun ringkasan sumber data yang digunakan ditampilkan pada Tabel 3.1.

- 1. Sektor Limbah, sektor ini dibagi menjadi 2 yaitu sampah dan limbah cair
 - a. Data diperoleh dari Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya (DKRTH) berupa komposisi sampah dan timbulan sampah di Kota Surabaya, dan jumlah sampah yang masuk ke TPA. Adapun dari PT Sumber Organik meliputi data konversi energi.
 - b. Limbah cair dianalisis berdasarkan limbah domestik yang dihasilkan dari populasi penduduk di Kota Surabaya.
- 2. Sektor Industrial Process And Product Uses (IPPU)

Dalam analisis ini diperlukan data bahan baku dan produksi yang dihasilkan dari industri. Dalam perhitungan di sektor ini perlu diperhatikan nilai faktor emisi yang terdapat pada IPCC *Guidelines* 2006 dan jurnal terkait.

- 3. Sektor energi, sektor ini terbagi menjadi 3 yaitu emisi dari sumber tidak bergerak dan sumber bergerak.
 - a. Sumber tidak bergerak, dalam analisis diperlukan data mengenai jenis dan jumlah bahan bakar yang digunakan oleh industri.
 - b. Sumber bergerak, dalam analisis ini diperlukan data bahan bakar yang digunakan untuk transportasi dan bahan bakar kendaraan di perusahaan seperti *forklift*.
- 4. Sektor Agriculture, Foresty, and Other Land Use (AFOLU)

Pada sektor ini dilakukan analisis data untuk bidang peternakan yaitu dari Rumah Potong Hewan (RPH) Kota Surabaya meliputi jumlah hewan yang dipotong, dan dari Dinas Ketahanan Pangan dan Pertanian Kota Surabaya meliputi jumlah hewan ternak yang dikelola. Pada bidang pertanian analisis meliputi luas lahan pertanian dan jenis pupuk yang digunakan di Kota Surabaya. Data luas lahan pertanian dan pupuk yang digunakan didapatkan dari Dinas Ketahanan Pangan dan Pertanian Kota Surabaya.

Tabel 3. 1 Sumber data yang digunakan dalam perhitungan emisi gas rumah kaca

Sektor	Subsektor	Sumber/Industri
Limbah	Limbah Padat	Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya PT Sumber Organik
	Limbah Cair	Dinas Kesehatan Kota Surabaya
Energi	Bahan Bakar Sumber Tidak Bergerak	 PT ISM, Tbk. Bogasari Flour Mills Surabaya PT Meshindo Alloy Wheel PT Bumi Menara Internusa PT Hasil Abadi Perdana PT Kedawung Setia Industrial PT Sari Mas Permai PT PGN PT Gunawan Dianjaya Steel PT Suparma PT Kedawung Setia Corrugated Carton Box Industrial PT Matahari Sakti PT Karet Ngagel Surabaya PT Salim Ivomas Pratama PT Campina

Sektor	Subsektor	Sumber/Industri
		15. PT. Bondi Syad Mulia
		16. PT SMART Tbk. Surabaya
		17. Unilever
		18. Pertamina LPG
	Bahan Bakar Sumber Bergerak	Pertamina distribusi
		PT Platinum Ceramic Industry
		2. PT Kedawung Subur
IPPU		PT Karet Ngagel Surabaya
		4. PT Gunawan Dianjaya Steel
		5. PT Yosomulyo Jajag
		Dinas Ketahanan Pangan dan Pertanian Kota
AFOLU		Surabaya
		2. Rumah Potong Hewan Kota Surabaya

Sumber: Penyusun, 2021

3.1 Sektor Energi

Dalam era industri dan teknologi saat ini, peranan energi sangatlah penting. Bertumbuhnya populasi urban, berkembangnya sektor industri, dan sektor rumah tangga akan meningkatkan konsumsi energi. Konsumsi energi yang terus meningkat menimbulkan dampak peningkatan emisi CO_2 yang tinggi dan tentu saja dapat mempengaruhi konsentrasi gas rumah kaca (Agung, et al., 2017). Pemanfaatan bahan bakar fosil seperti minyak bumi, batu bara, dan gas secara berlebihan dalam berbagai kegiatan sehari-hari merupakan penyebab utama dilepaskannya emisi gas rumah kaca ke atmosfer. Pembangkit listrik, penggunaan alat-alat elektronik seperti AC, TV, komputer, penggunaan kendaraan bermotor dan kegiatan industri merupakan contoh kegiatan manusia yang meningkatkan emisi GRK di atmosfer (Wulandari, et al., 2013). Sesuai dengan pedoman dalam IPCC 2006, gas-gas rumah kaca yang dihitung pada sektor energi adalah CO_2 , CH_4 , dan N_2O .

3.1.1 Pembakaran Bahan Bakar pada Sumber Tidak Bergerak

Perhitungan bahan bakar pada sumber tidak bergerak dibagi menjadi dua bagian. Bagian pertama adalah perhitungan emisi berdasarkan jumlah bahan bakar yang digunakan, dan kemudian dikalikan dengan faktor emisinya berdasar nilai energi dalam bahan bakar tersebut. Konsep ini dijelaskan pada subbab 3.1.1.1.

3.1.1.1 Perhitungan Emisi dari Bahan Bakar Berdasarkan Nilai Kalor

Perhitungan pada sektor ini menggunakan Tier 1. Perhitungan emisi GRK ini berdasarkan data aktivitas dan faktor emisi. Perhitungan emisi GRK dari bahan bakar menggunakan persamaan berikut:

Emisi GRK = Data aktivitas x Faktor emisi ... (1)

Data aktivitas adalah data mengenai banyaknya aktivitas manusia yang terkait dengan banyaknya emisi GRK. Aktivitas energi dapat berupa volume bahan bakar atau berat batubara yang dikonsumsi, banyaknya minyak yang diproduksi di lapangan migas (terkait dengan fugitive emission). Faktor emisi adalah suatu koefisien yang menunjukkan banyaknya emisi per unit aktivitas. Unit aktivitas dapat berupa volume yang diproduksi atau volume yang di konsumsi. Untuk pendekatan Tier 1 ini digunakan faktor emisi default (IPCC 2006 GL). Persamaan umum yang digunakan dalam perhitungan emisi GRK dari pembakaran bahan bakar adalah sebagai berikut:

Emisi GRK (kg GRK/tahun) = Konsumsi energi (TJ/tahun) x Faktor emisi (kg GRK/TJ) ... (2)

Faktor emisi menurut default IPCC dinyatakan dalam satuan emisi per unit energi yang dikonsumsi (kg GRK/TJ), sedangkan konsumsi energi yang tersedia pada umumnya dalam satuan fisik seperti ton batubara, kiloliter minyak diesel, dll. Oleh karena itu sebelum menggunakan persamaan (6) data konsumsi energi dikonversi terlebih dahulu ke dalam satuan energi TJ (Terajoule) dengan menggunakan persamaan berikut:

Konsumsi Energi (TJ/tahun) = Konsumsi energi (satuan fisik/tahun) x nilai kalor (TJ/satuan fisik) ... (3)

Tabel berikut merupakan tabel nilai kalor bahan bakar yang digunakan di Indonesia.

Niloi Kolor

Tabel 3.2 Nilai Kalor Bahan Bakar di Indonesia

Bahan Bakar	Nilai Kalor	Penggunaan
Premium*	33x10 ⁻⁶ TJ/liter	Kendaraan bermotor
Solar (HSD, ADO)	36x10 ⁻⁶ TJ/liter	Kendaraan bermotor, pembangkit listrik
Minyak diesel (IDO)	38x10 ⁻⁶ TJ/liter	Boiler industri, pembangkit listik
MFO	40x10 ⁻⁶ TJ/liter 4,04x10 ⁻² TJ/ton	Pembangkit listrik
Gas bumi	1,055x10 ⁻⁶ TJ/SCF 38,5x10 ⁻⁶ TJ/Nm	Industri, rumah tangga, restoran

Bahan Bakar	Nilai Kalor	Penggunaan
LPG	47,3x10 ⁻⁶ TJ/kg	Rumah tangga, restoran
Batubara	18,9x10 ⁻³ TJ/ton	Pembangkit listrik, industri

Sumber: Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional (Pengadaan dan Penggunaan Energi), 2012

Catatan:

*) termasuk pertamax, pertamax plus

HSD : High Speed Diesel
ADO : Automotive Diesel Oil
IDO : Industrial Diesel Oil

Apabila data pemakaian gas yang diperoleh dalam bentuk volume (m³), cara perhitungannya menjadi sedikit berbeda. Perhitungan dari data ini dilakukan dengan cara sebagai berikut :

Konsumsi energi (TJ) = pemakaian gas (m^3) x nilai kalor bahan bakar (TJ/Nm^3) ... (4)

Untuk mengetahui besarnya emisi (kg GRK/tahun) selanjutnya dihitung dengan:

Emisi GRK (kg GRK/tahun) = konsumsi energi (TJ) x FE (CO₂, CH₄, N₂O) ... (5)

Beberapa perusahaan ada yang menggunakan satuan MBTU dan MMBTU dalam penggunaan bahan bakar gas sehingga perlu konversi tersendiri untuk menghitung konsumsi bahan bakarnya. Konversi dari satuan MBTU dan MMBTU adalah sebagai berikut:

1 MBTU = 1.055.000 Joule 1 MMBTU = 1.055.000.000 Joule 1 Joule = 1 x 10⁻¹² Terajoule

Konsumsi gas yang memiliki satuan MBTU/MMBTU dikonversi ke satuan Joule kemudian dikonversi menjadi Terajoule (TJ). Setelah diketahui konsumsi gas dalam satuan TJ kemudian dikalikan dengan faktor emisi (Tabel 3.3) sehingga dapat diketahui emisi yang dihasilkan. Selain menggunakan gas sebagai bahan bakar, PT Hasil Abadi Perdana, PT Sari Mas Permai, PT Suparma, PT Kedawung Setia Corrugated Carton Box Industrial, PT Matahari Sakti, menggunakan batubara sebagai bahan bakar untuk proses produksi. Perhitungan nilai emisinya menggunakan persamaan 2 dan persamaan 4. Nilai faktor emisi bahan bakar tersebut dapat dilihat pada Tabel 3.3.

Tabel 3.3 Faktor Emisi dari Pembakaran Bahan Bakar Sumber Stasioner

Bahan	Sumber	Faktor emisi (kg GRK/TJ)		
Bakar	Sumber	CO ₂	CH ₄	N ₂ O
	Industri Manufaktur	64.200	3	0,6
NGL/CGN	Rumah tangga	64.200	10	0,6
	Bangunan komersial	64.200	10	0,6
Batubara	Industri Energi	98.300	1	1,5
(antrasit)	Industri Manufaktur	98.300	10	1,5
Kayu Bakar*		112	30	4

Sumber : Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional (Pengadaan dan Penggunaan Energi), 2012

*Modul Pelatihan Inventarisasi Emisi Gas Rumah Kaca dan Penghitungan Baseline Bidang Energi, Transportasi, dan Industri

3.1.2 Pembakaran Bahan Bakar pada Sumber Bergerak

Emisi GRK dari pembakaran bahan bakar pada sumber bergerak adalah emisi GRK yang dihasilkan dari transportasi. Transportasi tersebut meliputi transportasi melalui darat (jalan raya, kereta api), transportasi melalui air (sungai dan laut) dan transportasi melalui udara (pesawat terbang). Selain itu juga meliputi emisi dari kendaraan atau alat berat yang digunakan oleh industri seperti *forklift*. Hasil emisi GRK dari pembakaran bahan bakar pada sektor transportasi berupa CO₂, CH₄ dan N₂O.

Perhitungan emisi GRK sektor ini menggunakan *Tier* 1. Nilai emisi GRK tergantung pada jumlah konsumsi bahan bakar minyak yang digunakan sebagai bahan bakar kendaraan dalam setiap jenis transportasi. Jenis dari bahan bakar minyak berpengaruh terhadap besarnya nilai emisi karena memiliki faktor emisi yang berbeda. Emisi GRK pada pembakaran bahan bakar pada sumber bergerak dihitung dengan persamaan berikut:

Emisi GRK (satuan fisik/tahun) = Konsumsi energi (TJ/tahun) x Faktor emisi (satuan fisik/TJ) ... (6)

Konsumsi energi dapat dihitung dengan menggunakan Persamaan (3) dan nilai kalor bahan bakarnya menggunakan pada Tabel 3.4 sampai dengan Tabel 3.6. Faktor emisi bahan bakar yang digunakan terdapat pada tabel berikut:

Tabel 3.4 Faktor Emisi Bahan Bakar Sumber Bergerak

No	Bahan Bakar	Fakto	or Emisi (to	n/TJ)
		CO ₂	CH₄	N ₂ O
1	Solar	74.100	3,9	3,9

Sumber : Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional (Pengadaan dan Penggunaan Energi), 2012

Tabel 3. 5 Faktor Emisi CO₂ Sumber Bergerak dari Kendaraan Bermotor

Tipe	Emisi kg GRK/TJ
Tipo	CO ₂
Motor gasoline	69.300
Gas/Diesel oil	74.100
LPG	63.100
Kerosene	71.900
CNG	56.100
LNG	56.100

Sumber : Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Pengadaan dan Penggunaan Energi), 2012

Tabel 3. 6 Faktor Emisi CH₄ dan N₂O Sumber Bergerak dari Kendaraan Bermotor

Tino	CH ₄	N ₂ O
Tipe	kg/TJ	kg/TJ
Premium uncontrolled	33	3,2
Premium dengan catalyst	25	8
Solar/ADO	3,9	3,9
Gas bumi/cgn	92	3
LPG	62	0,2
Ethanol, truk	260	41
Ethanol, mobil	18	Na

Sumber: IPCC, 2006

3.2 Sektor Limbah

Pada perhitungan emisi gas rumah kaca sektor limbah terbagi menjadi limbah padat dan limbah cair domestik. Perhitungan sektor limbah padat dihitung berdasarkan data dari Dinas Kebersihan Ruang Terbuka Hijau dan PT Sumber Organik, sedangkan limbah cair domestik dari data populasi penduduk.

3.2.1 Sektor Limbah Padat

Sektor limbah padat dihitung dari jumlah sampah yang masuk ke TPA. Selain itu juga dilakukan perhitungan pemulihan CH₄ yang didapatkan dari *recovery* energi yang dilakukan di TPA. Data timbulan sampah yang diperoleh untuk sektor limbah padat atau sampah dianalisis dalam rumus IPCC 2006 berikut:

Emisi $CH_4 = (MSWT \times MSWF \times MCF \times DOC \times DOCf \times F \times 16/12 - R) \times (1 - Ox) ... (7)$ Keterangan :

MSWT = Timbulan sampah kota atau berat sampah yang dihasilkan

MSWF = Persentase sampah yang masuk ke TPA

MCF = Faktor koreksi metana, sebesar 0,5 berdasarkan IPCC 2006

untuk managed - semi aerobic

DOC = Degradasi organik karbon dalam sampah

DOC adalah karakteristik limbah yang menentukan besarnya gas CH₄ yang dapat terbentuk selama proses degradasi komponen organik/karbon yang terdapat pada limbah. Pada sampah padat, besarnya DOC bergantung pada komposisi (% berat) masing-masing komponen sampah. Untuk menghitung nilai DOC dapat menggunakan persamaan berikut:

Keterangan:

Wi = Komposisi sampah

DOCi = Persentase DOC sesuai IPCC 2006 (wet weight basis)

DOCf = Fraksi DOC, sebesar 0,5 berdasarkan IPCC 2006

F = Fraksi volume CH₄, sebesar 0,5 berdasarkan IPCC 2006

16/12 = Rasio berat molekul CH_4/C

R = Pemulihan CH₄

Ox = Faktor oksidasi, sebesar 0,1 berdasarkan IPCC 2006 untuk

managed covered with CH₄ oxidizing material

DOC dihitung dengan menggunakan *worksheet* dari IPCC 2006. Setelah mendapatkan nilai DOC (*Degradable Organic Carbon*), nilai emisi gas metana yang dihasilkan dapat dihitung dengan mengacu IPCC 2006.

3.2.2 Sektor Limbah Cair

Perhitungan emisi gas rumah kaca sektor air limbah menggunakan *Tier* 1. Perhitungannya menggunakan rumus IPCC 2006 berikut:

Emisi
$$CH_4 = [(Ui \times Tij \times EFi) \times (TOW - S)] - R ... (9)$$

Keterangan:

Ui = Fraksi populasi

Tij = Derajat pemanfaatan dari saluran atau sistem pengolahan/pembuangan

I = Grup pendapatan

EFi = Faktor emisi

TOW = Total organik dalam limbah cair

S = Lumpur yang dipisahkan

R = Jumlah CH₄ yang dikumpulkan

Nilai Ui, Tij, Efi, S, dan R terdapat pada *Guidelines* IPCC disesuaikan dengan jenis sanitasi yang diakses oleh masyarakat. Perhitungannya menggunakan cara berikut:

$$TOW = P \times BOD \times 0,001 \times I \times 365 \dots$$
 (10)

Keterangan:

TOW = Total organik dalam air limbah (kg BOD/tahun)

P = Jumlah penduduk (orang)

BOD = *Biological Oxygen Demand* atau kebutuhan oksigen biologis untuk memecah bahan buangan di dalam air oleh mikroorganisme (g BOD/orang/hari)

0,001 = Konversi g BOD ke kg BOD

= Faktor koreksi untuk BOD industri tambahan yang dibuang ke selokan

Data untuk sektor limbah padat ini didapat dari Dinas Kebersihan dan Ruang Terbuka Hijau (DKRTH) Kota Surabaya Tahun 2020 dan PT Sumber Organik, sedangkan data untuk sektor air limbah, yaitu data jumlah penduduk yang terlayani akses sanitasi layak didapatkan dari Dinas Kesehatan Kota Surabaya Tahun 2020.

3.3 Sektor AFOLU (Agriculture, Forestry, and Other Land Use)

Sesuai arahan IPCC, penggunaan dan perubahan lahan untuk inventarisasi emisi dan serapan GRK dibedakan menjadi 6 (enam) kategori, sebagai berikut:

- Forest Land (Lahan Hutan), kategori ini mencakup semua lahan dengan vergetasi berkayu. Dalam kategori ini juga termasuk sistem dengan struktur vegetasi di luar definisi hutan, tetapi berpotensi bisa mencapai nilai ambang batas atau memenuhi definisi hutan yang digunakan suatu negara.
- 2. *Cropland* (Lahan Pertanian dan *Agrofestry*), kategori ini meliputi tanaman pangan, termasuk sawah dan sistem *agroforesti*.
- 3. *Grassland* (Padang Rumput dan Savana), kategori ini mencakup padang pengembalaan dan padang rumput yang tidak dianggap sebagai lahan pertanian.

- 4. Wetlands (Lahan Rawa, Gambut, Sungai, Danau, dan Waduk), kategori ini mencakup lahan dari pengembangan gambut dan lahan yang ditutupi atau jenuh oleh air untuk sepanjang atau sebagian tahun (misalnya, lahan gambut). Kategori ini termasuk reservoir/waduk, sungai alami dan danau.
- 5. Settlements (Permukiman/Infrastruktur), kategori ini mencakup semua lahan yang dikembangkan termasuk infrastruktur transportasi dan pemukiman dari berbagai ukuran, kecuali yang sudah termasuk dalam kategori lain.
- Other Land (Lahan Lainnya), kategori ini meliputi tanah terbuka, lahan berbatu, lahan bersalju, dan semua lahan yang tidak masuk ke salah satu dari lima kategori di atas.

Dalam laporan ini, sektor AFOLU yang dihitung hanya terdiri atas peternakan dan pertanian. Gas-gas rumah kaca yang dihitung adalah CO₂ dan CH₄. Gas metana (CH₄) bisa berasal dari berbagai sumber termasuk emisi dari fermentasi enterik, ternak, budidaya tanaman padi, dan penggunaan pupuk.

3.3.1 Sub Sektor Peternakan

3.3.1.1 Fermentasi Enterik

Fermentasi enterik adalah gas metana yang dihasilkan oleh hewan memamah biak (herbivora) sebagai hasil samping dari suatu proses pemecahan karbohidrat hasil pencernaan oleh mikroorganisme untuk diserap ke dalam aliran darah. Persamaan untuk menghitung fermentasi enterik mengacu pada IPCC 2006 sebagai berikut:

Emissions =
$$EF_{(T)} \times N_{(T)} \times 10^{-6} \dots (11)$$

Keterangan:

Emissions = Emisi metana dari fermentasi enterik (Gg CH₄/tahun)

 $\mathsf{EF}_{(T)}$ = Faktor emisi populasi jenis ternak tertentu

(kg/ekor/tahun)

N_(T) = Jumlah populasi jenis atau kategori ternak tertentu

(ekor)

T = Jenis atau kategori ternak

Faktor emisi metana dari fermentasi enterik ditunjukkan pada tabel berikut:

Tabel 3.7 Faktor Emisi Metana dari Fermentasi Enterik

No	No Jenis Ternak	Faktor Emisi Metana
INU		(kg/ekor/tahun)
1	Sapi pedaging	47

2	Sapi perah	61
3	Kerbau	55
4	Domba	5
5	Kambing	5
6	Babi	1
7	Kuda	18

Sumber : Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya), 2012

3.3.1.2 Pengelolaan Ternak

Data populasi ternak yang didapatkan dari Dinas Ketahanan Pangan dan Pertanian Kota Surabaya dianalisis menggunakan rumus pengelolaan ternak. Potensi gas metana dapat dihitung dari pengelolaan ternak yang dihasilkan. Potensi gas metana dihitung menggunakan persamaan yang mengacu pada IPCC 2006 sebagai berikut:

$$CH_4 \ manure = EF_{(T)} \times N_{(T)} \times 10^{-6} \dots (12)$$

Keterangan:

CH₄ manure = Emisi metana dari fermentasi enterik (Gg CH₄/tahun)

EF(T) = Faktor emisi populasi jenis ternak tertentu

(kg/ekor/tahun)

N(T) = Jumlah populasi jenis atau kategori ternak tertentu

(ekor)

T = Jenis atau kategori ternak

Faktor emisi metana dari pengelolaan ternak ditunjukkan pada tabel berikut ini :

Tabel 3.8 Faktor Emisi Metana dari Pengelolaan Ternak

No	Jenis Ternak	Faktor Emisi Metana (kg/ekor/tahun)
1	Sapi pedaging	1
2	Sapi perah	31
3	Kerbau	2
4	Domba	0,20
5	Kambing	0,22
6	Babi	7
7	Kuda	2,19
8	Ayam buras	0,02
9	Ayam ras	0,02

No	Ionio Tornok	Faktor Emisi Metana
No	Jenis Ternak	(kg/ekor/tahun)
10	Ayam petelur	0,02
11	Bebek	0,02

Sumber : Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya), 2012

3.3.2 Subsektor Pertanian

3.3.2.1 Emisi Karbondioksida (CO₂) dari Lahan Pertanian

Dalam perhitungan emisi CH₄ dari lahan pertanian, diperlukan data aktivitas berikut :

a. Data Aktivitas:

- Luas panen padi sawah dalam 1 tahun (A)
- Lama budidaya padi dalam 1 tahun (t)
- EF padi sawah dengan irigasi terus-menerus dan tanpa pengembalian bahan organik (EFc)
- Faktor skala lahan sawah irigasi intermitten (SFw)
- Faktor skala rejim air sebelum periode budidaya (SFp) tidak digunakan karena tergenang sebelum penanaman <30 hari
- Jumlah pupuk kandang yang digunakan (ROA)
- Faktor skala untuk jenis tanah oksisols (SFs)
- Faktor skala varietas padi Ciherang (SFr)
- Conversion factor for different types of organic amendment (CFOA)
 Setelah diketahui data aktivitas, maka tahapan perhitungannya dilakukan dengan mengacu pada Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya Tahun 2012 seperti berikut ini:

b. Tahapan Perhitungan:

Menghitung faktor skala untuk pupuk kandang

SFo =
$$(1 + ROA \times CFOA)^{0.59}$$
 ... (13)

Menghitung faktor emisi harian

EFi =
$$(EFc \times SFw \times SFo \times SFs \times SFr)$$
 ... (14)

Menghitung emisi metana dari lahan sawah

$$CH_4 \ rice = EFi \times t \times A \times 10^{-6}$$
 ... (15)

3.3.2.2 Emisi Karbondioksida (CO₂) dari Penggunaan Pupuk Urea

Penggunaan pupuk urea pada budidaya pertanian menyebabkan lepasnya CO_2 yang diikat selama proses pembuatan pupuk. Urea $(CO(NH_2)_2)$ diubah menjadi amonium (NH_4^+) , ion hidroksil (OH^-) , dan bikarbonat (HCO_3^-) dengan adanya enzim urease. Mirip dengan reaksi tanah pada penambahan kapur, bikarbonat yang terbentuk selanjutnya berkembang menjadi CO_2 dan air. Emisi CO_2 dari penggunaan pupuk urea dihitung dengan persamaan berikut:

 CO_2 emission = M urea x EF urea ... (16)

Keterangan:

CO₂ emission = Emisi C tahunan dari aplikasi urea (ton CO₂/tahun)

M urea = Jumlah pupuk urea yang diaplikasikan (ton/tahun)

EF urea = Faktor emisi, sebesar 0,20 berdasarkan Pedoman

Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup – Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya

Tahun 2012

3.4 Sektor IPPU (Industrial Process and Product Uses)

Pada subbab ini sumber utama emisi GRK yaitu dari kegiatan proses industri dan penggunaan produk. Sumber-sumber emisi dari sektor IPPU dikelompokkan dalam delapan kategori utama yaitu :

- a) Industri mineral
- b) Industri kimia
- c) Industri logam
- d) Penggunaan produk bahan bakar non-energi dan pelarut
- e) Industri elektronik
- f) Penggunaan produk pengganti zat-zat yang menipiskan lapisan ozon (ODS)
- g) Pembuatan produk-produk lainnya dan penggunaannya
- h) Lain-lain

Pada laporan Inventarisasi GRK Tahun 2021 didapatkan data bahan baku dan produk dari beberapa perusahaan sebagai berikut :

Tabel 3.9 Bahan Baku dan Produk untuk Perhitungan Emisi Sektor IPPU

No	Perusahaan	Bahan / Produk	Kategori	Kategori Sumber
	Felusaliaali	Dallall / Floduk		Emisi
1	PT Platinum Ceramic	Clay	Bahan baku	Industri Mineral

No	Perusahaan	Bahan / Produk	Kategori	Kategori Sumber Emisi	
	Industry	dustry Keramik			
2	PT Yosomulyo Jajag	Green petroleum coke	Bahan baku	Industri Logam	
_	F i Tosomuiyo Jajag	Calcined petroleum coke	Produk	muusiii Logaiii	
		Limestone	Bahan baku		
	PT Kedawung Subur	Pasir kwarsa	Bahan baku		
		Cullet / beling	Bahan baku		
3		Soda ash	Bahan baku	Industri Mineral	
		Al(OH) ₂	Bahan baku		
		Produksi utama	Produk		
		Produk sampingan (Cullet)	Produk		
4	PT Karet Ngagel	Conveyor Belt dan Rubber	Produk	Industri Mineral	
4	Surabaya	<i>Article</i>	FIOUUK	muustii wiinerai	
5	PT Gunawan Dianjaya	Slab	Bahan baku	Industri Logam	
5	Steel	Plate Baja	Produk	Industri Logam	

Sumber:

PT Platinum Ceramic Industry, PT Yosomulyo Jajag, PT Kedawung Subur, PT Karet Ngagel Surabaya, PT Gunawan Dianjaya Steel, 2021

Perhitungan emisi GRK pada sektor IPPU disesuaikan dengan proses produksi masing-masing industri dan jenis bahan yang digunakan. Berikut langkah-langkah perhitungannya.

3.4.1 Industri Produsen Keramik

- a. Data yang digunakan
 - Data total produksi keramik (ton/tahun). PT Platinum Ceramic Industry memiliki data produksi dalam satuan m²/tahun. Sehingga untuk mendapatkan total produksi dalam satuan ton/tahun, maka perlu dicari massa jenisnya.
 - 2. Bahan baku keramik yaitu *clay* (tanah liat)
 - 3. Massa jenis *clay* / tanah liat adalah 1.702 kg/m³
 - 4. Asumsi ketebalan keramik adalah 1 cm
 - 5. Faktor emisi batu kapur (CaCO₃) dari IPCC GL Tahun 2006 sebesar 0,43971 ton CO₂/ton karbonat
 - 6. Faktor emisi dolomit (CaMg(CO₃)₂) dari IPCC GL Tahun 2006 sebesar 0,47732 ton CO₂/ton karbonat

b. Persamaan perhitungan yang digunakan tercantum pada IPCC GL 2006
 Volume 3 (sektor IPPU) Chapter 2 (Emisi Industri Mineral) Halaman 2.34

Emisi CO_2 = $M_c \times (0.85 EF_{ls} + 0.15 EF_d)$

Dimana:

Emisi CO₂ = Emisi CO₂ dari kegiatan produksi

M_c = Massa karbonat yang digunakan (ton)

 EF_{ls} atau EF_{d} = Faktor emisi dari batu kapur atau kalsinasi

dolomit (ton CO₂/ton karbonat)

Menurut IPCC kandungan karbonat dalam *clay* dapat diasumsikan sebesar 10%, dalam industri ini keramik yang dihasilkan terbuat dari *clay*, maka berat keramik yang dimasukkan dalam rumus hanya 10% dari berat total keramik.

c. Langkah perhitungan emisi

Perhitungan emisi GRK untuk industri keramik menggunakan data hasil produksi keramik dalam satuan ton/tahun. Data *clay* atau tanah liat sebagai bahan bakunya tidak dihitung untuk menghindari *double counting*. Berikut langkah perhitungan emisinya.

1. Menghitung volume total keramik

Volume keramik = Luas keramik x tinggi asumsi keramik

2. Menghitung berat total keramik

Berat total keramik = volume keramik x massa jenis keramik

3. Emisi CO_2 = 10% x Berat total keramik x (0,85 EF_{ls} + 0,15

EF_d)

3.4.2 Industri Produsen Calcined Petroleum Coke

- a. Data yang digunakan
 - 1. Data hasil produksi *calcined petroleum coke* (ton/tahun)
 - 2. Faktor Emisi dari US EPA Emission Factors 2014

Persamaan yang digunakan:

Emisi CO₂ = Total produk (ton/tahun) x faktor emisi CO₂

Emisi CH₄ = Total produk (ton/tahun) x faktor emisi CH₄

Emisi N₂O = Total produk (ton/tahun) x faktor emisi N₂O

b. Langkah perhitungan emisi

Perhitungan emisi GRK untuk industri *calcined petroleum coke* menggunakan data hasil produksi *calcined petroleum coke* dalam satuan ton/tahun. Data *green petroleum coke* sebagai bahan bakunya tidak dihitung untuk menghindari *double counting*. Berikut langkah perhitungan emisinya.

- 1. Emisi GRK = Total produk (ton/tahun) x faktor emisi GRK
- 2. Mengkonversi emisi CH₄ dan N₂O ke satuan emisi CO₂
- 3. Menjumlahkan seluruh emisi CO₂ baik dari hasil konversi atau hasil perhitungan langsung.

3.4.3 Industri Produsen Glassware

- a. Data yang digunakan
 - 1. Data total penggunaan *limestone* (ton/tahun)
 - 2. Data total penggunaan soda *ash* (ton/tahun)
 - 3. Data total produksi utama (*glassware*) (ton/tahun)
 - 4. Data total produksi sampingan *cullet* (ton/tahun)
 - Faktor emisi batu kapur (CaCO₃) dari IPCC GL Tahun 2006 sebesar 0,43971 ton CO₂/ton karbonat
 - 6. Faktor emisi soda ash (Na₂CO₃) dari IPCC GL Tahun 2006 sebesar 0,41492 ton CO₂/ton karbonat
 - 7. Faktor emisi untuk produksi kaca dari IPCC GL Tahun 2006 sebesar 0,2 ton CO₂/ton *glass*
- b. Persamaan perhitungan yang digunakan tercantum pada IPCC GL 2006 Volume 3 (sektor IPPU) *Chapter* 2 (Emisi Industri Mineral) Halaman 2.28. Persamaan perhitungan yang digunakan ada 2 (dua), yang pertama perhitungan emisi dari penggunaan zat karbonat sebagai bahan baku, kemudian yang kedua adalah perhitungan emisi untuk hasil produksi *glassware*. Dalam industri ini yang tergolong dalam jenis karbonat adalah batu kapur dan soda *ash*. Perhitungan emisi pada industri *glassware* menggunakan data batu kapur, soda *ash*, hasil produksi *glassware* dan *cullet*. Pasir kwarsa dan Al(OH)₂ tidak dilakukan perhitungan emisi karena tidak termasuk dalam jenis karbonat maupun jenis kaca selain itu juga tidak ditemukan faktor emisinya dalam IPCC GL Tahun 2006.

Berikut persamaan perhitungan emisi untuk penggunaan karbonat.

Emisi CO_2 = $M_i \times EF_i \times F_i$

Dimana:

Emisi CO₂ = Emisi CO₂ dari kegiatan produksi

M_i = Massa karbonat yang digunakan (ton)

EF_i = Faktor emisi dari karbonat tertentu (ton CO₂/ton karbonat)

F_i = Fraksi kalsinasi yang dicapai untuk karbonat. Dapat

diasumsikan fraksi kalsinasinya adalah 1,00

Persamaan perhitungan emisi produksi kaca

Emisi CO_2 = $M_g \times EF_i \times (1 - CR)$

Dimana:

Emisi CO_2 = Emisi CO_2 dari kegiatan produksi M_{α} = Massa kaca yang diproduksi (ton)

EF = Faktor emisi untuk pembuatan kaca (ton CO₂/ton *glass*)

CR = Cullet ratio untuk proses, fraksi. Nilai fraksinya adalah 0,5

3.4.4 Industri Produsen Conveyor Belt dan Rubber Article

a. Data yang digunakan

- 1. Data total hasil produksi *conveyor belt* (ton/tahun)
- 2. Data total hasil produksi *rubber article* (ton/tahun)
- 3. Faktor emisi dari Jawjit dkk (2010)
- b. Asumsi yang digunakan
 - 1. Bahan *conveyor belt* adalah karet seluruhnya (100%), karena ketiadaan data berapa persen karet yang menyusun *conveyor belt*
 - 2. Karet yang dihasilkan dari latex yang ditanam pada proses penanaman. Proses penanaman ini ada dua: 1) latex dari penanaman muda, segar dan tanah deforestasi, 2) penanaman lama dari tanah terolah. Emisi yang dihasilkan akan lebih besar dari penanaman pada lahan deforestasi. Faktor emisi tersebut ditampilkan pada tabel di bawah. Laporan ini akan menggunakan asumsi bahwa latex diproduksi pada lahan deforestasi, sehingga kami memilih angka faktor emisi terbesar. Bahan karet conveyor belt berasal dari block rubber (Jawjit dkk, 2010)

Tabel 3. 10 Emisi GRK (ton CO₂e/ton produk) dari Produksi Karet Primer

Product	Latex from relatively young plantations on deforested land	Latex from relatively old plantations on cultivated land
Concentrated latex	13	0,54
Block rubber (STR 20)	13	0,7
Ribbed Smoked Sheet (RSS)	21	0,66

Sumber: Jawjit dkk, 2010

c. Persamaan yang digunakan

Emisi CO₂ = Total produk (ton/tahun) x faktor emisi CO₂

3.4.5 Industri Produsen Plate Baja

- a. Data yang digunakan
 - 1. Data total hasil produksi plate baja
 - 2. Faktor emisi yang digunakan bersumber dari *Worldsteel Association* yaitu sebesar 1,85 ton CO₂/ton baja
- b. Persamaan yang digunakan

Perhitungan emisi hanya dilakukan untuk hasil produksi *plate* baja, karena jika slab dilakukan perhitungan emisi dengan menggunakan faktor emisi di atas dapat terjadi *double counting* dan ketidaksesuaian dengan faktor emisinya.

Emisi CO₂ = Total produk (ton/tahun) x faktor emisi CO₂

BAB 4

GAMBARAN UMUM

4.1 Gambaran Umum Kota Surabaya

Kota Surabaya terletak di antara 112° 36′ – 112° 54′ Bujur Timur dan 70° 21′ Lintang Selatan. Kota Surabaya berbatasan dengan selat Madura di sebelah utara dan di sebelah timur, di sebelah selatan berbatasan dengan Kabupaten Sidoarjo dan di sebelah barat berbatasan dengan Kabupaten Gresik. Kota Surabaya umumnya merupakan dataran rendah dengan ketinggian antara 3 – 6 meter diatas permukaan laut, kecuali daerah di sebelah selatan dengan ketinggian antara 25 – 50 meter di atas permukaan laut.

Temperatur Kota Surabaya rata-rata antara 22,60 – 34,10 dengan tekanan udara rata-rata antara 1.005,2 – 1.013,9 milibar dan kelembaban antara 42% – 97%. Kecepatan angin rata-rata per jam mencapai 12 – 23 km, curah hujan rata-rata antara 120 – 190 mm. Jenis tanah yang terdapat di Wilayah Kota Surabaya terdiri atas jenis tanah aluvial dan grumusol. Pada jenis tanah aluvial terdiri atas 3 karakteristik yaitu aluvial hidromorf, aluvial kelabu tua, dan aluvial kelabu. Kota Surabaya memiliki 31 kecamatan dengan pengelompokan 5 (lima) wilayah pembantu walikota yaitu Surabaya Utara, Surabaya Timur, Surabaya Selatan, Surabaya Barat, dan Surabaya Pusat. Total luas wilayah Surabaya adalah 334,51 km².

4.2 Sektor-Sektor Emisi Gas Rumah Kaca Kota Surabaya

Surabaya merupakan pusat bisnis, perdagangan, industri, dan pendidikan di Kawasan Indonesia Timur. Surabaya juga dikenal sebagai kota perdagangan internasional yang dilakukan melalui jalur maritim yang berlokasi di Pelabuhan Perak. Dengan predikat Surabaya sebagai kota perdagangan terdapat beberapa pilar-pilar penyangganya. Lokasi-lokasi ini yang menjadi ruang-ruang terjadinya aktivitas perdagangan. Desain kota perdagangan sejalan dengan Pelabuhan Perak yang langsung terhubung dengan daerah pusat industri dan pergudangan di Surabaya seperti SIER, Berbek, Margomulyo.

4.2.1 Sektor Energi

Penggunaan energi di Kota Surabaya berasal dari penggunaan bahan bakar minyak, gas alam, batu bara dan energi baru terbarukan lainnya. Bahan bakar tersebut ada yang digunakan untuk kegiatan sumber tidak bergerak dan ada yang digunakan untuk kegiatan sumber bergerak. Berikut merupakan data konsumsi bahan bakar yang digunakan. Pada tabel data konsumsi bahan bakar sumber tidak bergerak

di bawah ini, data penggunaan gas untuk PT PGN merupakan data dari sektor rumah tangga, pelanggan kecil, dan industri yang dijumlahkan.

Tabel 4.1 Sumber Data Perhitungan Sumber Tidak Bergerak

No	Perusahaan	Bahan Bakar	Konsumsi Bahan Bakar	Satuan
1	PT. ISM, Tbk. Bogasari Flour Mills Surabaya	Gas	21.750	mmbtu
2	PT Meshindo Alloy Wheel	Gas	71.171,11	mmbtu
3	PT Bumi Menara Internusa	Gas	5.332,4875	mmbtu
4	PT Hasil Abadi Perdana	Gas	942.555	mmbtu
4	PT Hasii Abadi Perdana	Batubara	6.146	ton
5	PT Kedawung Setia Industrial	Gas	80.687,12	mmbtu
6	PT Sari Mas Permai	Gas	14.680,18	mmbtu
0	PT San Mas Permai	Batubara	5.806	ton
7	PT PGN	Gas	471.542.750	m³
8	PT Gunawan Dianjaya Steel	Gas	10.056.902	m³
9	PT Suparma	Batubara	139.824	ton
10	PT Kedawung Setia Corrugated Carton Box Industrial	Batubara	5.806	ton
11	PT Matahari Sakti	Batubara	5.547	ton
12	DT Karat Naggal Surabaya	Batubara	520	ton
12	PT Karet Ngagel Surabaya	Kayu bakar	749	ton
		Gas	1.670.899	m³
13	PT Salim Ivomas Pratama	Batubara	16.145	ton
14	PT Campina	Gas	16.013	mmbtu
15	PT. Bondi Syad Mulia	Gas	450.393	mmbtu
16	PT SMART Tbk. Surabaya	Batubara	18.666	ton
17	Unilever	Gas	131.255	mmbtu
18	Pertamina LPG	LPG	346.870.170	kg

Sumber: PT Bogasari Flour Mills Surabaya, PT Suparma Tbk., PT Gunawan Dianjaya Steel (GDS), PT Meshindo Alloy Wheel, PT Kedawung Setia Corrugated Carton Box Industrial, PT Bumi Menara Internusa, PT Hasil Abadi Perdana, PT Kedawung Setia Industrial, Tbk., PT Sari Mas Permai, PT Matahari Sakti, PT PGN, PT Karet Ngagel Surabaya, PT Salim Ivomas Pratama, PT Campina, PT Bondi Syad Mulia, PT SMART Tbk. Surabaya, Unilever, Pertamina LPG, 2021

Tabel 4.2 Data Konsumsi Bahan Bakar Sumber Bergerak

No	Perusahaan	Bahan Bakar	Konsumsi bahan bakar (liter/tahun)
		Solar	166.212.000
1	Pertamina distribusi	Perta Series (Pertalite, Pertamax, Pertamax Turbo)	404.613.000
		Premium	60.280.000
		Dex Series (Dexlite, Pertamina Dex)	16.345.000

Sumber: Pertamina distribusi, 2021

4.2.2 Sektor Limbah

4.2.2.1 Sektor Limbah Padat

Pengelolaan sampah TPA Benowo dikembangkan menggunakan sistem pengelolaan sanitary landfill dan gasifikasi sehingga menghasilkan energi. Jumlah rata-rata timbulan sampah Kota Surabaya pada tahun 2020 adalah 2.222.617 kg/hari (Tabel 4.5) atau bila dalam Gg/tahun sebesar 811,26 Gg/tahun. Untuk perhitungan emisi GRK diperlukan komposisi sampah yang menunjukkan jenis sampah. Komposisi sampah yang masuk di TPA Benowo adalah sampah organik, kayu/produk kayu, kulit, karet, plastik, kertas/bahan kertas, kain/tekstil, kaca, keramik, logam, dan lain-lain. Adapun komposisi sampah di TPA dijelaskan pada Tabel 4.3 berikut ini:

Tabel 4.3 Komposisi Sampah

No	Komposisi Sampah	Persentase
1	Sampah organik	54,31%
2	Kayu / produk kayu	1,61%
3	Kulit	1,19%
4	Karet	1,14%
5	Plastik	19,44%
6	Kertas / bahan kertas	14,63%
7	Kain / tekstil	1,47%
8	Kaca	1,12%
9	Keramik	0,17%
10	Logam	0,48%
11	B3	0,86%
12	Lain-lain	3,59%
	Total	100%

Sumber : Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya, 2021

Tabel 4.4 Data Timbulan Sampah Tahun 2020

Timbulan					
No	Kacamatan	Jumlah			
No	Kecamatan	Penduduk	Sampah		
4	Karana Dilana	77 705	(kg/hari)		
1	Karang Pilang	77.735	54.725,44		
2	Wonocolo	83.624	58.871,30		
3	Rungkut	122.133	85.981,63		
4	Wonokromo	169.783	119.527,23		
5	Tegalsari	107.924	75.978,50		
6	Sawahan	216.391	152.339,26		
7	Genteng	62.278	43.843,71		
8	Gubeng	143.591	101.088,06		
9	Sukolilo	117.045	82.399,68		
10	Tambak Sari	239.289	168.459,46		
11	Simokerto	103.849	73.109,70		
12	Pabean Cantikan	85.086	59.900,54		
13	Bubutan	107.736	75.846,14		
14	Tandes	96.793	68.142,27		
15	Krembangan	126.043	88.734,27		
16	Semampir	206.071	145.073,98		
17	Kenjeran	180.531	127.093,82		
18	Lakarsantri	62.154	43.756,42		
19	Benowo	69.075	48.628,80		
20	Wiyung	74.495	52.444,48		
21	Dukuh Pakis	62.659	44.111,94		
22	Gayungan	47.346	33.331,58		
23	Jambangan	53.830	37.896,32		
24	Tenggilis Mejoyo	60.220	42.394,88		
25	Gunung Anyar	60.491	42.585,66		
26	Mulyorejo	90.656	63.821,82		
27	Sukomanunggal	108.163	76.146,75		
28	Asemrowo	49.927	35.148,61		
29	Bulak	46.118	32.467,07		
30	Pakal	59.111	41.614,14		
31	Sambikerep	66.979	47.153,22		
	Total	3.157.126	2.222.617		

Sumber : Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya, 2021

Tabel 4. 5 Jumlah Sampah yang Masuk ke TPA Tahun 2020

		_	
		Jumlah	Timbulan
No	Kecamatan	Penduduk	Sampah
			(kg/hari)
1	Karang Pilang	77.735	40.733,53
2	Wonocolo	83.624	43.819,40
3	Rungkut	122.133	63.998,31
4	Wonokromo	169.783	88.967,15
5	Tegalsari	107.924	56.552,72
6	Sawahan	216.391	113.389,98
7	Genteng	62.278	32.633,99
8	Gubeng	143.591	75.242,41
9	Sukolilo	117.045	61.332,17
10	Tambak Sari	239.289	125.388,65
11	Simokerto	103.849	54.417,40
12	Pabean Cantikan	85.086	44.585,49
13	Bubutan	107.736	56.454,21
14	Tandes	96.793	50.720,02
15	Krembangan	126.043	66.047,17
16	Semampir	206.071	107.982,25
17	Kenjeran	180.531	94.599,16
18	Lakarsantri	62.154	32.569,01
19	Benowo	69.075	36.195,65
20	Wiyung	74.495	39.035,76
21	Dukuh Pakis	62.659	32.833,63
22	Gayungan	47.346	24.809,54
23	Jambangan	53.830	28.207,19
24	Tenggilis Mejoyo	60.220	31.555,58
25	Gunung Anyar	60.491	31.697,59
26	Mulyorejo	90.656	47.504,20
27	Sukomanunggal	108.163	56.677,96
28	Asemrowo	49.927	26.162,00
29	Bulak	46.118	24.166,07
30	Pakal	59.111	30.974,46
31	Sambikerep	66.979	35.097,33
	Total	3.157.126	1.654.350
<u> </u>	5		

Sumber : Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya, 2021

Dari Tabel 4.4 dapat diketahui jumlah timbulan sampah yang dihasilkan sebanyak 2.222.617 kg/hari atau sebanyak 811.255.096,96 kg/tahun. Timbulan sampah dalam Gg/tahun adalah sebesar 811,26 Gg/tahun. Adapun pada Tabel 4.5 diketahui jumlah sampah yang masuk ke TPA Benowo pada tahun 2020 adalah sebesar 1.654.350 kg/tahun atau 603,84 Gg/tahun.

4.2.2.2 Limbah Cair

Penduduk di wilayah Kota Surabaya hampir seluruhnya sudah mendapatkan akses sanitasi layak, yaitu fasilitas sanitasi yang memenuhi syarat kesehatan seperti jamban, tangki septik, sewer, dan sistem pengolahan air limbah berupa IPLT. Berdasarkan data dari Dinas Kesehatan Kota Surabaya tahun 2020, sebanyak 941.443 keluarga dari total 957.278 keluarga di Kota Surabaya telah memiliki akses sanitasi yang layak. Dalam bentuk persentase, yaitu sebanyak 98,34% keluarga di Kota Surabaya telah memiliki akses sanitasi yang layak.

4.2.3 Sektor AFOLU (Agriculture, Forestry and Other Land Use)

Sektor pertanian di Kota Surabaya mengalami pergeseran dengan cepat. Lahan pertanian di Kota Surabaya banyak yang telah berubah menjadi perumahan. Berikut adalah data luas lahan pertanian di Kota Surabaya pada tahun 2020.

Tabel 4.6 Luas Lahan Pertanian Sawah Menurut Sistem Pengairan di Kota Surabaya
Tahun 2020

		Pengairan	
No	Kecamatan	Irigasi	Tadah Hujan
		(ha)	(ha)
1	Sukomanunggal	0	0
2	Tandes	0	5
3	Asemrowo	0	0
4	Benowo	0	92
5	Pakal	0	169
6	Lakarsantri	0	457,8
7	Sambikerep	0	133
8	Genteng	0	0
9	Tegalsari	0	0

		Penga	airan
No	Kecamatan	Irigasi	Tadah Hujan
		(ha)	(ha)
10	Bubutan	0	0
11	Simokerto	0	0
12	Pabean Cantikan	0	0
13	Semampir	0	0
14	Krembangan	0	0
15	Bulak	0	107
16	Kenjeran	0	0
17	Tambaksari	0	0
18	Gubeng	0	0
19	Rungkut	0	7
20	Tenggilis	0	0
21	Gunung Anyar	0	0
22	Sukolilo	0	68
23	Mulyorejo	0	36,8
24	Sawahan	0	0
25	Wonokromo	0	0
26	Karang Pilang	0	38
27	Dukuh Pakis	0	0
28	Wiyung	0	44
29	Gayungan	0	3
30	Wonocolo	0	2,5
31	Jambangan	0	1
	Total	0	1.164,1

Sumber: Dinas Ketahanan Pangan dan Pertanian Kota Surabaya, 2021

Dalam perhitungan nilai emisi gas rumah kaca yang dihasilkan dari lahan pertanian, diperlukan data konsumsi pupuk beserta jenisnya. Berikut data konsumsi pupuk di Kota Surabaya tahun 2020 :

Tabel 4.7 Jumlah Konsumsi dan Jenis Pupuk

No	Nama Pupuk	Konsumsi Pupuk Subsidi (ton)	Konsumsi Pupuk Bantuan Dinas (ton)	Total (ton)
1	Urea	606,4	3,004	609,404
2	Sp36	72	4	76
3	ZA	60	3,5	63,5

4	NPK	152	10,25	162,25
5	Organik	12	83,9	95,9

Sumber: Dinas Ketahanan Pangan dan Pertanian Kota Surabaya, 2021

Masih ada beberapa pemeliharaan hewan ternak di Kota Surabaya sehingga potensi gas metana ini dapat dihitung dari jumlah hewan yang dipotong di Rumah Potong Hewan Kota Surabaya dan pengelolaan hewan ternak. Tabel 4.8 dan Tabel 4.9 merupakan sumber data yang digunakan untuk melakukan perhitungan sektor AFOLU pada subsektor peternakan:

Tabel 4.8 Jumlah Hewan yang Dipotong di Kota Surabaya Tahun 2020

		Jumlah Hewan
No	Jenis Hewan	yang Dipotong
		(ekor/tahun)
1	Sapi	44.446
2	Kambing	9.294
3	Babi	45.043

Sumber: Rumah Potong Hewan Kota Surabaya, 2021

Tabel 4.9 Data Populasi Hewan Ternak di Kota Surabaya Tahun 2020

No	Jenis Hewan	Jumlah Hewan (ekor)
1	Sapi Potong	47
2	Sapi Perah	219
3	Kerbau	13
4	Kuda	79
5	Kambing	810
6	Domba	86
7	Kelinci	58
8	Ayam Buras	12.757
9	Ayam Petelur	450
10	Itik	1.303
11	Burung Dara	4.999

Sumber: Dinas Ketahanan Pangan dan Pertanian Kota Surabaya, 2021

4.2.4 Sektor IPPU (Industrial Process and Product Uses)

Kawasan perindustrian untuk Kota Surabaya terdiri dari 2 (dua) kategori yaitu :

- 1. Kawasan industri, yang terdiri dari komplek industri. Kawasan ini tersebar di beberapa wilayah yaitu :
 - a) Surabaya Utara yaitu kawasan industri strategis berupa industri perkapalan (PT PAL) yang terletak di Kawasan Pelabuhan;
 - Surabaya Timur, di PT SIER (Kecamatan Rungkut, Trenggilis Mejoyo, dan Gununganyar);
 - c) Surabaya Selatan, di kompleks industri Warugunung (Kecamatan Karangpilang);
 - d) Surabaya Barat, seperti di kompleks industri Margomulyo (Kecamatan Tandes).
- 2. Industri Non Kawasan, merupakan kegiatan industri individu dan sentra industri. Industri non kawasan ini berupa industri kecil yang dikembangkan di wilayah permukiman dan sentra industri pinggiran kota. Industri ini meliputi industri pangan dan sandang, mebel kayu, rotan, barang-barang elektronika, serta barang yang mempunyai nilai seni. Kawasan industri terpusat di wilayah Surabaya Barat.

Di bawah ini merupakan data dari beberapa industri di Surabaya yang akan digunakan untuk melakukan perhitungan emisi dari sektor IPPU.

Tabel 4.10 Data Bahan Baku dan Produk untuk Perhitungan Emisi Sektor IPPU

No	Perusahaan	Bahan / Produk	Kategori	Total	Satuan	
				Produk		
	PT Platinum	Clay	Bahan baku	220.614	ton/tahun	
1	Ceramic	Keramik	Produk	13.728.192	m²/tahun	
	Industry					
		Green	Bahan baku	123.645,12	ton/tahun	
2	PT Yosomulyo	petroleum coke	Dariari Daku	123.043,12	tori/tariuri	
_	Jajag	Calcined	Produk	109.072,7	ton/tahun	
		petroleum coke	Floduk	109.072,7	tori/tariuri	
		Limestone	Bahan baku	2.673	ton/tahun	
		Pasir kwarsa	Bahan baku	17.063	ton/tahun	
		Cullet / beling	Bahan baku	7.842	ton/tahun	
	PT Kedawung	Soda ash	Bahan baku	2.066	ton/tahun	
3	Subur	Al(OH) ₂	Bahan baku	397	ton/tahun	
		Produksi utama	Produk	22.815	ton/tahun	
		Produk				
		sampingan	Produk	7.842	ton/tahun	
		(Cullet)				

No	Perusahaan	Bahan / Produk	Kategori	Total Produk	Satuan
4	PT Karet Ngagel Surabaya	Conveyor Belt dan Rubber Article	Produk	806	ton/tahun
5	PT Gunawan Slab		Bahan baku	187.109,69	ton/tahun
	Dianjaya Steel	<i>Plate</i> baja	Produk	162.517,22	ton/tahun

Sumber: PT Platinum Ceramic Industry, PT Yosomulyo Jajag, PT Kedawung Subur, PT Karet Ngagel Surabaya, PT Gunawan Dianjaya Steel, 2021

Berdasarkan tabel di atas, PT Platinum Ceramic Industry menghasilkan keramik sebesar 13.728.192 m²/tahun. PT Yosomulyo Jajag menghasilkan *calcined petroleum coke* sebesar 109.072,7 ton/tahun. PT Kedawung Subur menghasilkan produk utama berupa *glassware* sebesar 22.815 ton/tahun dan produk sampingan berupa *cullet* sebesar 7.842 ton/tahun. PT Karet Ngagel Surabaya menghasilkan *conveyor belt* dan *rubber article* sebesar 806 ton/tahun. Serta PT Gunawan Dianjaya Steel yang menghasilkan *plate* baja sebesar 162.517,22 ton/tahun.

BAB 5

ANALISIS DAN PEMBAHASAN

5.1 Analisis dan Pembahasan Sektor Energi

5.1.1 Pembakaran Bahan Bakar pada Sumber Tidak Bergerak

Besarnya nilai emisi GRK dari hasil pembakaran bahan bakar tergantung dari jenis dan jumlah bahan bakar yang digunakan. Persamaan umum yang digunakan dalam perhitungan estimasi emisi GRK dari pembakaran bahan bakar pada sumber tidak bergerak adalah sebagai berikut.

Konsumsi Energi (TJ/tahun) = Konsumsi bahan bakar (satuan fisik/tahun) x nilai kalor (TJ/satuan fisik)

Emisi GRK (kg GRK/tahun) = Konsumsi energi (TJ/tahun) x Faktor emisi (kg GRK/TJ)

Data yang digunakan dalam perhitungan emisi kali ini adalah data jumlah penggunaan bahan bakar. Faktor emisi yang digunakan adalah IPCC *Guidelines for National Greenhouse Gas Inventories*, tepatnya pada volume 2 sektor energi. Sedangkan nilai kalor bahan bakar Indonesia diperoleh dari Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Tahun 2012. Berikut contoh perhitungan estimasi emisi dari penggunaan batu bara pada salah satu perusahaan yaitu PT Sari Mas Permai.

Jenis bahan bakar : batu bara

Konsumsi Energi = Konsumsi bahan bakar (satuan fisik) x nilai kalor bahan

bakar (TJ/satuan fisik)

= 5.806 ton/tahun x 0.0189 TJ/ton

= 110 TJ/tahun

Emisi CO₂ = Konsumsi energi (TJ/tahun) x Faktor emisi (kg CO₂/TJ)

= 110 TJ/tahun x 98.300 kg CO_2/TJ x 10^{-6}

= 10,787 Gg CO₂/tahun

Emisi CH_4 = Konsumsi energi (TJ/tahun) x Faktor emisi (kg CH_4/TJ)

= 110 TJ/tahun x 10 kg $CH_4/TJ \times 10^{-6}$

= 0,00110 Gg CH₄/tahun

Emisi N₂O = Konsumsi energi (TJ/tahun) x Faktor emisi (kg N₂O/TJ)

= 110 TJ/tahun x 1,5 kg N_2O/TJ x 10^{-6}

= 0,000165 Gg N₂O/tahun

Selain batu bara terdapat beberapa perusahaan yang menggunakan gas (m³) sebagai bahan bakar. Data penggunaan gas dari PT PGN yang dimasukkan dalam

laporan adalah penggunaan gas dari sektor rumah tangga, pelanggan kecil, dan industri. Setiap sektor memiliki faktor emisi yang berbeda-beda, sehingga pada saat perhitungan emisi akan dipisah setiap sektornya. Di bawah ini merupakan contoh perhitungan emisi berdasarkan data pemakaian gas (m³).

Perusahaan: PT PGN

Pemakaian gas sektor rumah tangga = 8.034.706 m³/tahun

Konsumsi Energi = Pemakaian gas (m³/tahun) x nilai kalor bahan bakar

(TJ/Nm³)

 $= 8.034.706 \text{ m}^3/\text{tahun x } 0,0000385 \text{ TJ/Nm}^3$

= 309,34 TJ/tahun

Emisi CO_2 = Pemakaian gas (TJ/tahun) x Faktor Emisi (kg CO_2 /TJ)

 $= 309,34 \text{ TJ/tahun x } 64.200 \text{ kg CO}_2/\text{TJ x } 10^{-6}$

= 19,859 Gg CO₂/tahun

Emisi CH_4 = Pemakaian gas (TJ/tahun) x Faktor Emisi (kg CH_4/TJ)

 $= 309,34 \text{ TJ/tahun x } 10 \text{ kg CH}_4/\text{TJ x } 10^{-6}$

= 0,0031 Gg CH₄/tahun

Emisi N_2O = Pemakaian gas (TJ/tahun) x Faktor Emisi (kg N_2O/TJ)

= 309,34 TJ/tahun x 0,6 kg N_2 O/TJ x 10⁻⁶

 $= 0,000186 \text{ Gg N}_2\text{O/tahun}$

Berbeda dengan bahan bakar yang lain, gas dengan satuan mbtu atau mmbtu, perlu konversi terlebih dahulu untuk menghitung konsumsi bahan bakar. Berikut adalah nilai konversi untuk satuan mbtu atau mmbtu.

1 mbtu = 1.055.000 Joule

1 mmbtu = 1.055.000.000 Joule

1 Joule = 1×10^{-12} Terajoule

Pemakaian gas dengan satuan mbtu atau mmbtu dikonversi terlebih dahulu ke satuan Terajoule (TJ). Pemakaian gas dengan satuan TJ kemudian dikalikan dengan faktor emisi sehingga dapat diketahui emisi yang dihasilkan. Berikut merupakan contoh perhitungan bahan bakar gas (mbtu atau mmbtu).

Perusahaan: PT ISM, Tbk. Bogasari Flour Mills Surabaya

Pemakaian gas = 21.750 mmbtu/tahun

Konversi ke Joule = $21.750 \times 1.055.000.000$ Joule

= 22.946.250.000.000 Joule/tahun

Konversi ke TJ = 22,95 TJ/tahun

Emisi CO₂ = Pemakaian gas (TJ/tahun) x Faktor Emisi (kg CO₂/TJ)

 $= 22,95 \text{ TJ/tahun x } 64.200 \text{ kg CO}_2/\text{TJ x } 10^{-6}$

 $= 1,47 \text{ Gg CO}_2/\text{tahun}$

Emisi CH_4 = Pemakaian gas (TJ/tahun) x Faktor Emisi (kg CH_4/TJ)

= 22,95 TJ/tahun x 3 kg CH_4/TJ x 10^{-6}

= 0,000069 Gg CH₄/tahun

Emisi N_2O = Pemakaian gas (TJ/tahun) x Faktor Emisi (kg N_2O/TJ)

= 22,95 TJ/tahun x 0,6 kg N_2O/TJ

 $= 0,000014 \text{ Gg N}_2\text{O/tahun}$

Selain batu bara dan gas terdapat perusahaan yang menggunakan kayu bakar sebagai bahan bakar. Nilai kalor dan faktor emisi dari penggunaan kayu sebagai bahan bakar diambil dari Modul Pelatihan Inventarisasi Emisi Gas Rumah Kaca dan Penghitungan *Baseline* Bidang Energi, Transportasi, dan Industri. Berikut contoh perhitungannya.

Perusahaan: PT Karet Ngagel Surabaya

Konsumsi energi = Konsumsi bahan bakar (satuan fisik/tahun) x nilai kalor

bahan bakar (TJ/satuan fisik)

= 749.000 kg/tahun x 0,000015 TJ/kg

= 11,24 TJ/tahun

Emisi CO₂ = Konsumsi energi (TJ/tahun) x Faktor emisi (kg CO₂/TJ)

= 11,24 TJ/tahun x 112 kg CO_2/TJ x 10^{-6}

= 0,001258 Gg CO₂/tahun

Emisi CH₄ = Konsumsi energi (TJ/tahun) x Faktor emisi (kg CH₄/TJ)

 $= 11,24 \text{ TJ/tahun x } 30 \text{ kg CH}_4/\text{TJ x } 10^{-6}$

= 0,000337 Gg CH₄/tahun

Emisi N₂O = Konsumsi energi (TJ/tahun) x Faktor emisi (kg N₂O/TJ)

= 11,24 TJ/tahun x 4 kg N_2O/TJ x 10^{-6}

= 0,00004494 Gg N₂O/tahun

Selain pemakaian bahan bakar untuk industri, terdapat pemakaian bahan bakar dari sektor rumah tangga, yaitu pemakaian *Liquefied Petroleum Gases* atau yang sering disingkat dengan LPG. LPG ini diproduksi oleh pertamina, yang akan didistribusikan untuk keperluan rumah tangga. Perhitungan emisi dari penggunaan LPG memerlukan nilai kalor bahan bakar dan faktor emisi. Nilai kalor bahan bakar LPG didapatkan dari Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Tahun 2012, sedangkan faktor emisinya berasal dari IPCC GL Tahun 2006 sektor energi. Berikut contoh perhitungan emisi dari penggunaan LPG untuk sektor rumah tangga.

Perusahaan: Pertamina LPG

Konsumsi LPG = 346.870.170 kg/tahun

Nilai kalor LPG = 0,0000473 TJ/kg

Konsumsi Energi = 346.870.170 kg/tahun x 0,0000473 TJ/kg

= 16.406,96 TJ/tahun

Emisi CO₂ = Konsumsi energi (TJ/tahun) x Faktor emisi (kg CO₂/TJ)

= 16.406,96 TJ/tahun x 63.100 kg CO₂/TJ x 10^{-6}

= 1.035,279 Gg CO₂/tahun

Emisi CH₄ = Konsumsi energi (TJ/tahun) x Faktor emisi (kg CH₄/TJ)

= $16.406,96 \text{ TJ/tahun x 5 kg CH}_4/\text{TJ x }10^{-6}$

= 0,0820 Gg CH₄/tahun

Emisi N₂O = Konsumsi energi (TJ/tahun) x Faktor emisi (kg N₂O/TJ)

= 16.406,96 TJ/tahun x 0,1 kg N_2O/TJ x 10^{-6}

= 0,00164 Gg N₂O/tahun

Hasil perhitungan emisi dari pembakaran bahan bakar pada sumber tidak bergerak dapat dilihat pada Tabel 5.1 – Tabel 5.5.

5.1.2 Pembakaran Bahan Bakar pada Sumber Bergerak

Emisi GRK yang diperoleh dari pembakaran bahan bakar pada sumber bergerak adalah emisi yang dihasilkan dari kegiatan transportasi. Kegiatan transportasi tersebut meliputi darat (jalan raya, kereta api), transportasi air (sungai dan laut), dan transportasi udara (pesawat terbang). Selain itu, emisi GRK pada sumber bergerak juga dihasilkan dari pengoperasian alat berat yang digunakan dalam industri. Emisi yang dihasilkan dari pembakaran bahan bakar pada sumber bergerak ini berupa CO₂, CH₄, dan N₂O. Langkah perhitungan pada sumber bergerak adalah sebagai berikut.

Konsumsi Energi (TJ/tahun) = Konsumsi bahan bakar (satuan fisik/tahun) x nilai kalor (TJ/satuan fisik)

Emisi GRK (kg GRK/tahun) = Konsumsi energi (TJ/tahun) x Faktor emisi (kg GRK/TJ)

Faktor emisi yang digunakan dari IPCC *Guidelines for National Greenhouse Gas Inventories*, tepatnya pada volume 2 sektor energi. Sedangkan nilai kalor bahan bakar Indonesia diperoleh dari Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Tahun 2012. Jenis bahan bakar juga berpengaruh terhadap besarnya nilai emisi dikarenakan nilai dari faktor emisi yang berbeda untuk setiap jenis bahan bakar.

Pada sektor ini, terdapat sedikit perbedaan data untuk pertamina distribusi, karena terdapat beberapa jenis bbm dari pertamina distribusi yang dijadikan satu kelompok. Kelompok yang dimaksud adalah kelompok dex series dan kelompok perta series. Bahan bakar minyak yang masuk ke dalam kelompok dex series adalah dexlite dan pertamina dex, selanjutnya bbm yang masuk kelompok perta series, yaitu pertalite, pertamax, dan pertamax turbo. Dexlite dan pertamina dex memiliki nilai kalor dan faktor emisi yang sama. Pertalite, pertamax, dan pertamax turbo juga memiliki nilai kalor dan faktor emisi yang sama. Oleh karena itu, meskipun datanya dijadikan satu tetap dapat dilakukan perhitungan emisi, karena bbm yang masuk ke dalam masing-masing kelompok memiliki nilai kalor dan faktor emisi yang sama. Selain hal tersebut, data solar dari pertamina distribusi yang digunakan pada laporan ini diasumsikan untuk kegiatan sumber bergerak. Di bawah ini contoh perhitungan emisi dari pembakaran bahan bakar pada sumber bergerak.

Perusahaan : Pertamina

Jenis bahan bakar : Dex series (Dexlite dan Pertamina Dex)

Dexlite dan Pertamina Dex memiliki nilai kalor dan faktor emisi yang sama

Konsumsi energi = Konsumsi bahan bakar (satuan fisik/tahun) x nilai kalor

bahan bakar (TJ/satuan fisik)

= 16.345.000 liter/tahun x 0,000036 TJ/liter

= 588,42 TJ/tahun

Emisi CO₂ = Konsumsi energi (TJ/tahun) x Faktor emisi (kg CO₂/TJ)

 $= 588,42 \text{ TJ/tahun x } 74.100 \text{ kg CO}_2/\text{TJ x } 10^{-6}$

= 43,60 Gg CO₂/tahun

Emisi CH₄ = Konsumsi energi (TJ/tahun) x Faktor emisi (kg CH₄/TJ)

 $= 588,42 \text{ TJ/tahun x } 3.9 \text{ kg CH}_{4}/\text{TJ x } 10^{-6}$

= 0,00229 Gg CH₄/tahun

Emisi N₂O = Konsumsi energi (TJ/tahun) x Faktor emisi (kg N₂O/TJ)

 $= 588,42 \text{ TJ/tahun x } 3,9 \text{ kg N}_2\text{O/TJ x } 10^{-6}$

= 0,00229 Gg N₂O/tahun

Hasil perhitungan emisi dari sumber bergerak dapat dilihat pada Tabel 5.6.

Tabel 5.1 Emisi dari Penggunaan Batu Bara pada Sumber Tidak Bergerak

No	Perusahaan	Konsumsi Bahan Bakar	Nilai Kalor (TJ/ton)	Kalor (TJ/tahun)		nisi (kg G	iRK/TJ)	Emisi GRK (Gg GRK/tahun)			
		(ton/tahun)	(TJ/ton)		CO ₂	CH₄	N ₂ O	CO ₂	CH₄	N ₂ O	
1	PT Suparma	139.824		2.643	98.300	10	1,5	259,77	0,02643	0,003964	
2	PT Kedawung Setia Corrugated	5.806		110	98.300	10	1,5	10,79	0,00110	0,000165	
	Carton Box Industrial	5.800		110	98.300	10	1,5	10,79	0,00110	0,000100	
3	PT Hasil Abadi Perdana	6.146		116	98.300	10	1,5	11,42	0,00116	0,000174	
4	PT Sari Mas Permai	5.806	0,0189	0,0189	110	98.300	10	1,5	10,79	0,00110	0,000165
5	PT Matahari Sakti	5.547		105	98.300	10	1,5	10,31	0,00105	0,000157	
6	PT Karet Ngagel Surabaya	520		10	98.300	10	1,5	0,97	0,00010	0,000015	
7	PT SMART Tbk. Surabaya	18.666		353	98.300	10	1,5	34,68	0,00353	0,000529	
8	PT Salim Ivomas Pratama	16.145		305	98.300	10	1,5	30,00	0,00305	0,000458	
	Total	3.083				368,71	0,03751	0,005626			

Sumber: Hasil Perhitungan, 2021

Emisi yang dihasilkan dari pembakaran batu bara adalah 368,71 Gg CO₂/tahun, 0,03751 Gg CH₄/tahun, dan 0,005626 Gg N₂O/tahun.

Tabel 5.2 Emisi dari Penggunaan Gas (m³) pada Sumber Tidak Bergerak

No	Jenis pelanggan Pemakaian gas (m³/tahun) Nilai Kalor Bahan Bakar (TJ/Nm³)		Konsumsi Energi (TJ/tahun)	FE NGL (kg GRK/TJ)		Emisi (Gg GRK/tahun)		ın)		
		,	, ,	,	CO ₂	CH₄	N ₂ O	CO ₂	CH₄	N ₂ O
1	Rumah tangga	8.034.706		309,34	64.200	10	0,6	19,859	0,0031	0,00019
2	Pelanggan Kecil	521.014		20,06	64.200	10	0,6	1,288	0,0002	0,00001
3	Industri	462.987.030	0,0000385	17.825,00	64.200	3	0,6	1.144,365	0,0535	0,01070
4	PT Gunawan Dianjaya Steel	10.056.902		387,19	64.200	3	0,6	24,858	0,0012	0,00023
5	PT Salim Ivomas Pratama	1.670.899		64,33	64.200	3	0,6	4,130	0,0002	0,00004
	Total	483.270.551		18.605,916				1.194,5	0,0581	0,01116

Sumber: Hasil Perhitungan, 2021

Emisi yang dihasilkan dari pembakaran bahan bakar gas (m³) adalah 1.194,5 Gg CO₂/tahun, 0,0581 Gg CH₄/tahun, dan 0,01116 Gg N₂O/tahun.

Tabel 5.3 Emisi dari Penggunaan Gas (mbtu/mmbtu) pada Sumber Tidak Bergerak

N	Perusahaan			Konsumsi	Faktor Emisi (kg GRK/TJ)			Emisi (Gg GRK/tahun)			
0		(mmbtu/tahun)	(joule/tahun)	(TJ/tahun)	CO ₂	CH ₄	N ₂ O	CO ₂	CH ₄	N ₂ O	
1	PT ISM, Tbk. Bogasari Flour Mills Surabaya	21.750	22.946.250.000.000	22,95	64.200	3	0,6	1,47	0,000069	0,000014	
2	PT Meshindo Alloy Wheel	71.171	75.085.521.050.000	75,09	64.200	3	0,6	4,82	0,000225	0,000045	
3	PT Bumi Menara Internusa	5.332	5.625.774.312.500	5,63	64.200	3	0,6	0,36	0,000017	0,000003	
4	PT Hasil Abadi Perdana	942.555	994.395.525.000.00 0	994,40	64.200	3	0,6	63,84	0,002983	0,000597	
5	PT Kedawung Setia	80.687,1	85.124.911.600.000	85,12	64.200	3	0,6	5,47	0,000255	0,000051	

	Industrial									
6	PT Sari Mas Permai	14.680	15.487.586.102.000	15,49	64.200	3	0,6	0,99	0,000046	0,000009
7	PT Campina	16.013	16.893.715.000.000	16,89	64.200	3	0,6	1,08	0,000051	0,000010
8	PT Bondi Syad Mulia	450.393	475.164.882.970.00 0	475,16	64.200	3	0,6	30,51	0,001425	0,000285
9	Unilever	131.255	138.474.025.000.00 0	138,47	64.200	3	0,6	8,89	0,000415	0,000083
	Total			1198,67				117,43	0,005488	0,001098

Sumber: Hasil Perhitungan, 2021

Emisi yang dihasilkan dari pembakaran bahan bakar gas (mbtu dan mmbtu) adalah 117,43 Gg CO₂/tahun, 0,005488 Gg CH4/tahun, dan 0,001098 Gg N₂O/tahun.

Tabel 5.4 Emisi dari Penggunaan Kayu Bakar pada Sumber Tidak Bergerak

No	No Perusahaan Konsum		Nilai Kalor	Konsumsi Energi		ktor Em GRK/T		(0	Emisi GRK Gg GRK/tahu	n)
	: 2: 2: 2: 3: (0.00)	Bakar (Kg/tahun)		(TJ/tahun)	CO ₂	CH ₄	N ₂ O	CO ₂	CH₄	N ₂ O
1	PT Karet Ngagel Surabaya	749.000	0,000015	11,24	112	30	4	0,00125832	0,000337	0,00004494

Sumber: Hasil Perhitungan, 2021

Emisi yang dihasilkan dari pembakaran bahan bakar kayu bakar adalah 0,00125832 Gg CO₂/tahun 0,000337 Gg CH₄/tahun, dan 0,00004494 Gg N₂O/tahun.

Tabel 5.5 Emisi dari Penggunaan LPG pada Sumber Tidak Bergerak

		Konsumsi LPG	sumsi LPG Nilai Kalor		Konsumsi Faktor Emisi (kg GRK/			K/TJ) Emisi GRK (Gg GRK/tahun)			
No	Perusahaan		Energi (TJ/tahun)	CO ₂	CH₄	N ₂ O	CO ₂	CH₄	N ₂ O		
1	Pertamina LPG	346.870.170	0,0000473	16.406,96	63.100	5	0,1	1.035,279	0,0820	0,00164	

Sumber: Hasil Perhitungan, 2021

Emisi yang dihasilkan dari penggunaan LPG dari sektor rumah tangga adalah 1.035,279 Gg CO₂/tahun 0,0820 Gg CH₄/tahun, dan 0,00164 Gg N₂O/tahun. Berikut merupakan perhitungan total emisi yang dihasilkan dari keseluruhan bahan bakar yang digunakan :

Total Emisi CO₂

- = emisi CO₂ batu bara + emisi CO₂ gas (m³) + emisi CO₂ gas (mbtu/mmbtu) + emisi CO₂ kayu bakar + emisi CO₂
- = $368,71 \text{ Gg CO}_2/\text{tahun} + 1.194,5 \text{ Gg CO}_2/\text{tahun} + 117,43 \text{ Gg CO}_2/\text{tahun} + 0,00125832 \text{ Gg CO}_2/\text{tahun} + 1.035,279 \text{ Gg CO}_2/\text{tahun}$
- = 2.715,927 Gg CO₂/tahun

LPG

Total Emisi CH₄ = emisi CH₄ batu bara + emisi CH₄ gas (m³) + emisi CH₄ gas (mbtu/mmbtu) + emisi CH₄ kayu bakar + emisi CH₄ LPG

= $0.03751~Gg~CH_4/tahun + 0.0581~Gg~CH_4/tahun + 0.005488~Gg~CH_4/tahun + 0.000337~Gg~CH_4/tahun + 0.0820~Gg~CH_4/tahun$

= 0,183 Gg CH₄/tahun

Total Emisi N_2O = emisi N_2O batu bara + emisi N_2O gas (m³) + emisi N_2O gas (mbtu/mmbtu) + emisi N_2O kayu bakar + emisi N_2O LPG

= 0,005626 Gg N_2 O/tahun + 0,01116 Gg N_2 O/tahun + 0,001098 Gg N_2 O/tahun + 0,00004494 Gg N_2 O/tahun + 0,00164 Gg N_2 O/tahun

= $0.0196 \text{ Gg N}_2\text{O/tahun}$

Total Emisi CH₄ dan emisi N₂O dikonversikan menjadi total emisi CO₂ dengan cara total emisi CH₄ dan emisi N₂O dikalikan dengan faktor konversinya.

Emisi CO₂ konversi dari total Emisi CH₄ = 0,183 Gg CH₄/tahun x 25

= 4,587 Gg CO₂/tahun

Emisi CO₂ konversi dari total Emisi N₂O = 0,0196 Gg N₂O/tahun x 298

= 5,833 Gg CO₂/tahun

Jadi, total emisi CO₂ yang dihasilkan dari pembakaran bahan bakar pada sumber tidak bergerak sebesar 2.726,347 Gg CO₂/tahun.

Tabel 5. 6 Emisi dari Pembakaran Bahan Bakar pada Sumber Bergerak

No	Perusahaan	Bahan bakar (liter)	Konsumsi bahan	Konsumsi bahan Nilai kalor bakar (liter/tahun) (TJ/liter)		Faktor Emisi (kg GRK/TJ)			Emisi (Gg GRK/tahun)		
			bakar (ilici/tariari)	(10/11(01)	(TJ/tahun)	CO ₂	CH₄	N ₂ O	CO ₂	CH₄	N ₂ O
		Solar	166.212.000	0,000036	5.983,63	74.100	3,9	3,9	443,39	0,02334	0,02334
1	Pertamina distribusi	Perta Series (Pertalite, Pertamax, Pertamax Turbo)	404.613.000	0,000033	13.352,23	69.300	25	8	925,31	0,33381	0,10682
	distribusi	Premium	60.280.000	0,000033	1.989,240	69.300	25	8	137,85	0,04973	0,01591
		Dex Series (Dexlite, Pertamina Dex)	16.345.000	0,000036	588,42	74.100	3,9	3,9	43,60	0,00229	0,00229
	Total							1.550,153	0,409	0,148	

Sumber: Hasil Perhitungan, 2021

Emisi yang dihasilkan dari pembakaran bahan bakar pada sumber bergerak adalah $1.550,153~Gg~CO_2$ /tahun $0,409~Gg~CH_4$ /tahun, dan $0,148~Gg~N_2$ O/tahun Total Emisi CH_4 dan emisi N_2 O dari pembakaran bahan bakar pada sumber bergerak dikonversikan menjadi total emisi CO_2 dengan cara total emisi CH_4 dan emisi N_2 O dikalikan dengan faktor konversinya.

Emisi CO_2 konversi dari total Emisi CH_4 = 0,409 Gg CH_4 /tahun x 25 = 10,229 Gg CO_2 /tahun Emisi CO_2 konversi dari total Emisi N_2O = 0,148 Gg N_2O /tahun x 298 = 44,212 Gg CO_2 /tahun

Jadi, total emisi CO₂ yang dihasilkan dari pembakaran bahan bakar pada sumber bergerak adalah sebesar 1.604,594 Gg CO₂/tahun.

Berdasarkan hasil perhitungan emisi dari sektor energi, maka total emisi yang dihasilkan dari sektor energi baik dari pembakaran bahan bakar pada sumber tidak bergerak dan pembakaran bahan bakar pada sumber bergerak dapat dilihat pada tabel dibawah ini.

Tabel 5. 7 Emisi dari Sektor Energi

No	Sumber	Emisi (Gg CO ₂ /tahun)
1	Pembakaran bahan bakar dari sumber tidak bergerak	2.726,347
2	Pembakaran bahan bakar dari sumber bergerak	1.604,594
	Total	4.330,941

Sumber: Hasil Perhitungan, 2021

Jadi, total emisi yang dihasilkan dari sektor energi adalah sebesar 4.330,941 Gg CO₂/tahun.

5.2 Analisis dan Pembahasan Sektor Limbah

5.2.1 Analisis dan Pembahasan Sektor Limbah Padat

Untuk sektor limbah padat terdiri dari emisi gas rumah kaca yang dihasilkan dari limbah padat domestik (sampah kota) atau *municipal solid waste* (MSW). Pada kajian inventarisasi ini perhitungan sektor limbah dihitung berdasarkan data aktivitas di TPA. Dari data timbulan sampah yang diperoleh untuk sektor limbah padat (pengelolaan sampah) akan dimasukkan dalam rumus IPCC 2006.

Nilai timbulan sampah yang dihasilkan oleh penduduk di Kota Surabaya adalah sebesar 811,26 Gg/tahun dan jumlah sampah yang masuk ke TPA sebesar 603,84 Gg/tahun. Langkah pertama dalam perhitungan emisi GRK sektor limbah padat

adalah menghitung DOC (*Degradable Organic Carbon*) dengan menggunakan *worksheet* dari IPCC 2006 dan data yang dibutuhkan berupa jumlah timbulan sampah dan DOC. Nilai DOC menentukan besarnya gas CH₄ yang dapat terbentuk pada proses degradasi komponen organik/karbon yang ada pada limbah. Tabel di bawah ini merupakan hasil perhitungan dari DOC.

Tabel 5.8 Perhitungan DOC

Α	В	С	D	Е	F	G
			Kandungan	DOCi dalam	DOCi dalam	
No	Jenis Sampah	Wi ¹	Bahan	Basis Berat	Basis Berat	DOC ³
			Kering ²	Kering ²	Basah ²	
					DxE	CxF
1	Sampah basah (sisa	0,5431	0,4	0,49	0,2	0,1064
'	makanan dan kebun)	0,0401	0,4	0,40	0,2	0,1004
2	Kayu	0,0161	0,85	0,5	0,43	0,0068
3	Kulit	0,0119	0,84	0,47	0,39	0,0047
4	Karet	0,0114	0,84	0,47	0,39	0,0045
5	Plastik	0,1944	1			
6	Kertas	0,1463	0,9	0,44	0,4	0,0579
7	Kain / tekstil	0,0147	0,8	0,3	0,24	0,0035
8	Kaca	0,0112	1			
9	Keramik	0,0017				
10	Logam	0,0048	1			
11	Lain-lain	0,0359	0,9			
	Ha	sil Perhitun	gan DOC Sam	pah		0,1840

Sumber:

Setelah mendapatkan nilai DOC (*Degradable Organic Carbon*), nilai emisi gas metana yang dihasilkan di Kota Surabaya dapat dihitung dengan bantuan *worksheet* IPCC 2006. Khusus untuk nilai *recovery* (pemulihan CH₄) di TPA sudah ada penangkapan gas metan sehingga nilai gas metan yang dipulihkan/tidak terlepas di udara sebesar 3,2562 Gg CH₄. Perhitungannya terdapat pada Tabel 5.11. Pada perhitungan ini, data listrik yang dihasilkan didapatkan dari PT Sumber Organik seperti yang tercantum dalam Tabel 5.9 dan 5.10 berikut ini:

¹Dinas Kebersihan dan Ruang Terbuka Hijau Kota Surabaya, 2021

²IPCC. 2006

³Hasil Perhitungan, 2021

Tabel 5.9 Rekap Produksi Listrik Landfill Gas Power Plant TPA Benowo Surabaya
Tahun 2020

No	Bulan	Actual Production (kWh)		
1	Januari	408.946		
2	Februari	474.311		
3	Maret	661.006		
4	April	840.869		
5	Mei	890.459		
6	Juni	796.368		
7	Juli	703.885		
8	Agustus	535.096		
9	September	364.283		
10	Oktober	347.565		
11	November	300.751		
12	Desember	436.793		
Tota	al Amount per Year	6.760.332		
Α	verage per Month	676.033		
/	Average per Day	18.521		

Sumber: PT. Sumber Organik, 2020

Tabel 5.10 Rekap Gas yang Dikonversi ke Energi Listrik Landfill Gas Power Plant TPA

Benowo Surabaya Tahun 2020

		Jumlah Gas yang					
No	Bulan	Dikonversi					
		ke Energi Listrik (Nm³)					
1	Januari	213.259,3					
2	Februari	247.346,2					
3	Maret	344.704,8					
4	April	438.500,7					
5	Mei	464.361,2					
6	Juni	415.294,1					
7	Juli	367.065,6					
8	Agustus	279.044,6					
9	September	189.968,2					
10	Oktober	181.250,0					
11	November	156.837,2					
12	Desember	227.781,1					

		Jumlah Gas yang					
No	Bulan	Dikonversi					
		ke Energi Listrik (Nm ³)					
Tota	al Amount per Year	3.525.413					
A	verage per Month	352.541					
Average per Day		9.659					

Sumber: PT. Sumber Organik, 2020

Tabel 5.11 Perhitungan Nilai Recovery CH₄

А	В	С	D	Е	F
	Jumlah Gas				
Listrik yang	yang	Gas Metana	Densitas	Gas Metana	Gas Metana
Dihasilkan	Dikonversi ke	(m³/tahun)	Gas Metana	(kg/tahun)	(Gg/tahun)
(kWh/tahun)	Energi Listrik	(III /tailuii)	(kg/m³)	(kg/tariuri)	(Og/tariuri)
	(Nm³/tahun)				
		(A/4,7)+B		CxD	Ex10^-6
6.760.332	3.525.413	4.963.781,51	0,656	3.256.240,67	3,2562

Sumber: Hasil Perhitungan, 2021

Catatan : Densitas untuk gas metana adalah sebesar 0,656 kg/m³, Nm³ merupakan penggunaan gas pada suhu 25°C (dianggap sama dengan m³), dan berdasarkan Panjaitan (2012) dapat diketahui bahwa energi 1 m³ biogas setara dengan 4,7 kWh energi listrik

Setelah menghitung nilai DOC dan nilai *recovery* CH₄, selanjutnya dilakukan perhitungan dengan menggunakan *worksheet* IPCC 2006, sebagaimana terdapat pada Tabel 5.12. Berikut merupakan contoh perhitungannya:

Total sampah yang dibuang ke TPA = 603,84 Gg/tahun

Nilai DOC = 0.1840

Fraksi DOC = 0,5 (berdasarkan IPCC 2006)

Faktor koreksi metana = 0,5 (berdasarkan IPCC 2006 untuk *managed* – *semi aerobic*)

DDOCmd = Total sampah yang dibuang ke TPA x nilai DOC x

fraksi DOC x faktor koreksi metana

= 603,84 Gg/tahun x 0,1840 x 0,5 x 0,5

= 27,7693 Gg

Fraksi CH_4 = 0,5 (berdasarkan IPCC 2006)

Rasio = 16/12 (berdasarkan IPCC 2006)

= 1,33

 CH_4 yang dihasilkan = DDOCmd x fraksi CH_4 x rasio

= 27,7693 Gg x 0,5 x 1,33

= 18,5128 Gg

Recovery CH_4 = 3,2562 Gg

Faktor oksidasi = 0,1 (berdasarkan IPCC 2006 untuk managed covered with

CH₄ oxidising material)

Emisi CH_4 = $(CH_4 \text{ yang dihasilkan} - recovery CH_4) x (1 - faktor)$

oksidasi)

 $= (18,5128 \text{ Gg} - 3,2562 \text{ Gg}) \times (1-0)$

= 13,7309 Gg CH₄/tahun

Tabel 5.12 Hasil Perhitungan Emisi Gas Metana

А	В	С	D	Е	F	G	Н	I	J	K	L	М
Tipe	Wilayah	Total Sampah yang Dibuang ke TPA Selama Setahun (Gg)	DOC ²	DOCf ¹	MCF ¹	DDOCmd ² (Gg)	F ¹	Konversi dan Rasio ¹ (16/12)	CH₄ yang Dihasilkan² (Gg)	R ² (Gg)	Ox ¹	Emisi CH ₄ ²
						CxDxExF			GxHxI			(J-K)*(1- L)
Dikelola -												
anaerob												
Dikelola - semi	Kota	603,84	0,1840	0,5	0,5	27,7693	0,5	1,33	18,5128	3,2562	0,1	13,7309
aerob	Surabaya	, -		-,-	- , -	,	- , -	,		-,	- ,	-,
Tidak dikelola -												
kedalaman												
limbah >5 m												
dan atau lebih												
tinggi												

Sumber:

Pada tabel di atas, *sheet* kolom yang digunakan untuk perhitungan emisi GRK yang dibuang ke TPA adalah dikelola – semi aerob. TPA Benowo dalam operasionalnya dikelola sesuai dengan desain awalnya yaitu *sanitary landfill* yang harus dilakukan penutupan *layer* setiap hari. Emisi metana yang dihasilkan dari limbah padat adalah sebesar 13,7309 Gg CH₄. Untuk mengubahnya ke CO₂, maka nilai emisi CH₄ harus dikalikan faktor konversinya yaitu 25, sehingga besarnya nilai emisi limbah padat di TPA adalah sebesar 343,2733 Gg CO₂e.

¹IPCC,2006

²Hasil Perhitungan, 2021

5.2.2 Analisis dan Pembahasan Sektor Limbah Cair

Perhitungan emisi gas rumah kaca pada subsektor air limbah menggunakan rumus IPCC 2006. Sebelum menghitung emisi GRK, perlu dihitung terlebih dahulu nilai TOW (Total Organically Degradable Material in Wastewater). TOW adalah total material organik dalam limbah yang terurai didapatkan dari populasi penduduk Kota Surabaya yang terlayani oleh akses sanitasi yang layak. Untuk jumlah penduduk dengan akses sanitasi tidak layak atau masih melakukan praktik buang air besar sembarangan baik di sungai, laut, atau danau tidak dimasukkan karena berdasarkan pedoman inventarisasi gas rumah kaca sektor limbah dari Kementerian Lingkungan Hidup dan Kehutanan, masuk kategori none dengan faktor emisi 0 dan derajat utilisasi juga 0 untuk kota dengan pendapatan tinggi (high income) seperti pada Tabel 5.16. Selanjutnya, emisi dari IPLT Kota Surabaya yang memiliki oxidation ditch juga tidak dihitung karena oxidation ditch merupakan pengolahan air limbah biologis aerobik, dimana berdasarkan pedoman inventarisasi gas rumah kaca sektor limbah dari Kementerian Lingkungan Hidup dan Kehutanan disebutkan bahwa pada pengolahan aerobik tidak dihasilkan emisi gas rumah kaca namun menghasilkan lumpur/sludge yang perlu diolah melalui anaerobic digestion, land disposal, maupun insinerasi. Limbah cair yang tidak dikumpulkan namun diolah setempat, seperti latrine dan septic tank untuk limbah cair domestik merupakan sumber emisi gas rumah kaca yang tercakup dalam inventarisasi.

Berikut ini data jumlah penduduk Kota Surabaya yang terlayani oleh akses sanitasi yang layak :

Tabel 5. 13 Jumlah Penduduk dengan Akses Sanitasi Layak di Kota Surabaya Tahun 2020

No	Kecamatan	Jumlah KK	Penduduk dengan Akses Sanitasi Layak	
			Jumlah	Persentase (%)
1	Sukomanunggal	33.503	32.805	97,21
2	Tandes	29.677	29.677	100
3	Asemrowo	14.104	12.868	85,51
4	Benowo	21.125	20.647	90,38
5	Pakal	17.767	17.749	99,88
6	Lakarsantri	19.173	19.173	100
7	Sambikerep	20.609	20.609	100
8	Genteng	20.106	19.562	97,96

No	Kecamatan	Jumlah KK		dengan Akses tasi Layak
			Jumlah	Persentase (%)
9	Tegalsari	33.191	32.959	98,42
10	Bubutan	33.014	32.540	98,82
11	Simokerto	31.431	30.392	96,92
12	Pabean Cantikan	24.978	23.905	95,81
13	Semampir	55.860	52.556	92,55
14	Krembangan	37.260	36.075	97,64
15	Bulak	14.178	14.060	98,68
16	Kenjeran	51.810	51.447	99,1
17	Tambaksari	74.283	73.327	98,75
18	Gubeng	45.988	45.450	99
19	Rungkut	37.253	36.961	99,2
20	Tenggilis	18.976	18.889	99,51
21	Gunung Anyar	18.736	18.412	97,98
22	Sukolilo	35.538	35.124	98,94
23	Mulyorejo	28.201	28.076	99,6
24	Sawahan	65.466	64.779	98,63
25	Wonokromo	52.254	51.102	97,65
26	Karang Pilang	23.868	23.714	98,82
27	Dukuh Pakis	19.467	19.467	100
28	Wiyung	23.114	23.114	100
29	Gayungan	14.279	14.279	100
30	Wonocolo	25.392	25.048	98,82
31	Jambangan	16.677	16.677	100
	Jumlah	957.278	941.443	

Sumber: Dinas Kesehatan, 2021

Rata-rata anggota keluarga = 3,24 (berdasarkan BPS Kota Surabaya, 2020) Jumlah keluarga dengan akses sanitasi yang layak = 941.443 keluarga Jumlah penduduk Kota Surabaya dengan akses sanitasi yang layak

- = 941.443 keluarga x 3,24
- = 3.050.275 orang

Sebanyak 941.443 keluarga dari total 957.278 keluarga di Kota Surabaya telah memiliki akses sanitasi yang layak. Dalam bentuk persentase, yaitu sebanyak 98,34% keluarga di Kota Surabaya telah memiliki akses sanitasi yang layak.

Adapun nilai komponen organik yang dapat diurai dan faktor koreksi yang dibuang ke selokan untuk menghitung TOW didapatkan dari IPCC 2006. Hasil perhitungan dari TOW dapat dilihat pada Tabel 5.14 berikut :

Tabel 5.14 Hasil Perhitungan TOW

А	В	С	D	E	F
Kota	P ² (orang)	BOD ¹ (g/orang/hari)	BOD ² (kg BOD/tahun)	l ¹	TOW ² (kg BOD/tahun)
			Cx0,001x365		BxDxE
Surabaya	3.050.275	40	14,6	1	44.534.019,67

Sumber:

Dari hasil perhitungan didapatkan nilai TOW sebesar 44.534.019,67 kg BOD/tahun. Kota Surabaya merupakan kota dengan grup *high income*, sehingga menggunakan fraksi populasi sebesar 0,12 sesuai dengan IPCC 2006 sebagaimana disampaikan pada Tabel 5.15. Proses pengolahan limbah cairnya dilakukan dengan beberapa cara yaitu adanya *septic tank*, jamban (*latrine*), saluran (*sewer*), dan lainnya. Fraksi untuk tiap-tiap pengolahan limbah cair di Kota Surabaya dan faktor emisinya disesuaikan dengan Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup – Pengelolaan Limbah tahun 2012 sebagaimana disampaikan pada Tabel 5.16.

¹IPCC, 2006

²Hasil Perhitungan, 2021

Tabel 5.15 Data Default (IPCC 2006 Guidelines) Fraksi Penggunaan Tipe Pengolahan Limbah Cair Perkotaan Untuk Berbagai Kategori Masyarakat

	Url	panization	(U) ¹			Degre	ee of Utilisa	tion of Ti	reatment o	r Dischar	ge Pathwa	y or Method	for Eac	h Income	Group (1	Гij) ³		
Country	Fraction of Population		Rural				Urban-High Income			Urban-Low Income								
	Rural	Urban- High ²	Urban- Low ²	Septic Tank	Latrine	Other	Sewer ⁴	None	Septic Tank	Latrine	Other	Sewer ⁴	None	Septic Tank	Latrine	Other	Sewer⁴	None
Asia		riigii	LOW	rank					rank					rank				
China	0,59	0,12	0,29	0,00	0,47	0,50	0,00	0,03	0,18	0,08	0,07	0,67	0,00	0,14	0,10	0,03	0,68	0,05
India	0,71	0,06	0,23	0,00	0,47	0,10	0,10	0,33	0,18	0,08	0,07	0,67	0,00	0,14	0,10	0,03	0,53	0,20
Indonesia	0,54	0,12	0,34	0,00	0,47	0,00	0,10	0,43	0,18	0,08	0,00	0,74	0,00	0,14	0,10	0,03	0,53	0,20
Pakistan	0,65	0,07	0,28	0,00	0,47	0,00	0,10	0,43	0,18	0,08	0,00	0,74	0,00	0,14	0,10	0,03	0,53	0,20
Bangladesh	0,72	0,06	0,22	0,00	0,47	0,00	0,10	0,43	0,18	0,08	0,00	0,74	0,00	0,14	0,10	0,03	0,53	0,20
Japan	0,20	0,80	0	0,20	0	0,50	0,30	0	0	0	0,10	0,90	0	0,10	0	0	0,90	0

Notes:

- 1. Urbanization projections for 2005 (United Nations, 2002).
- 2. Suggested urban-high income and urban-low income division. Countries are encouraged to use their own data or best judgement.
- 3. Tij values based on expert judgement (Doorn and Liles, 1999).
- 4. Sewers may be open or closed, which will govern the choice of MCF.
- 5. Destatis, 2001

Note: These values are from the literature or based on expert judgement. Please use national values, if available.

Sumber: IPCC,2006

Tabel 5.16 Fraksi Penggunaan Tipe Pengolahan Limbah Cair di Kota Surabaya

Income Croup	Type of Treatment or	Fraction of Population Income	Degree of Utilization	Emission
Income Group	Discharge Pathway	Group (Ui)	(Tij)	Factor (EFj)
	Septic Tank	0,12	0,88	0,30
Urban high	Latrine	0,12	0,03	0,06
income	Other	0,12	0,05	0,06
moome	Sewer	0,12	0,04	0,06
	None	0,12	0	0

Sumber : Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup – Pengelolaan Limbah, 2012

Tabel 5.17 Hasil Perhitungan Emisi GRK dari Limbah Cair

А	В	С	D	E	F	G	Н
Kelompok Pendapatan	Jenis Perlakuan	Ui ¹	Tij ²	EFj ²	TOW ³ (kg BOD/tahun)	Emisi Metana ³ (kg CH₄/tahun)	Emisi Metana ³ (Gg CH₄/tahun)
						CxDxExF	Gx10^-6
Perkotaan	Septic Tank	0,12	0,88	0,3	44.534.019,67	1.410.837,74	1,4108
dengan	Jamban (Latrine)	0,12	0,03	0,06	44.534.019,67	9.619,35	0,0096
penghasilan	Lainnya (Other)	0,12	0,05	0,06	44.534.019,67	16.032,25	0,0160
yang tinggi	Saluran (Sewer)	0,12	0,04	0,06	44.534.019,67	12.825,80	0,0128
yang miggi	Tidak ada (None)	0,12	0	0	44.534.019,67	0	0
	,	Total				1.449.315,14	1,4493

Sumber: ¹IPCC, 2006; ²Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Buku II Volume 4 – Pengelolaan Limbah, 2012; ³Hasil Perhitungan, 2021

Dari hasil perhitungan diperoleh emisi CH_4 untuk limbah cair Kota Surabaya sebesar 1,4493 Gg CH_4 /tahun. Untuk mengubahnya menjadi Gg CO_2 , maka nilai emisi CH_4 harus dikalikan dengan faktor konversinya yaitu 25, sehingga besarnya nilai emisi limbah cair adalah sebesar 1,4493 x 25 = 36,2329 Gg CO_2 e/tahun.

Setelah didapatkan hasil perhitungan emisi GRK di TPA dan limbah cair, selanjutnya dapat diketahui total emisi GRK pada sektor limbah di Kota Surabaya dengan menjumlahkan kedua hasil tersebut sebagai berikut :

Emisi GRK di TPA = $343,2733 \text{ Gg CO}_2/\text{tahun}$

Emisi GRK limbah cair = 36,2329 Gg CO₂/tahun

Total emisi GRK sektor limbah = 343,2733 Gg CO₂/tahun + 36,2329 Gg CO₂/tahun

 $= 379,5062 \text{ Gg CO}_2/\text{tahun}$

5.3 Analisis dan Pembahasan Sektor AFOLU

5.3.1 Subsektor Peternakan

5.3.1.1 Fermentasi Enterik

Fermentasi enterik adalah gas metana yang dihasilkan oleh hewan memamah biak (herbivora) sebagai hasil samping dari suatu proses dimana karbohidrat dari hasil pencernaan dipecah menjadi molekul sederhana oleh mikroorganisme untuk diserap ke dalam aliran darah. Berikut merupakan hasil dari perhitungan potensi gas metana yang dihasilkan oleh Rumah Potong Hewan (RPH) Kota Surabaya. Potensi gas metana yang dihasilkan sebesar 2,1805 Gg CH₄/tahun. Untuk menghitung emisi dalam bentuk Gg CO₂/tahun maka jumlah tersebut perlu dikalikan 25 sebagai faktor konversi. Hasilnya adalah sebesar 54,5119 Gg CO₂e/tahun.

Contoh perhitungannya adalah sebagai berikut:

Potensi emisi gas metana dari sapi

- $= EF_{(T)} \times N_{(T)} \times 10^{-6}$
- = 47 kg/ekor/tahun x 44.446 ekor x 10⁻⁶
- = 2,0890 Gg CH₄/tahun

Hasil perhitungan selengkapnya dapat dilihat pada Tabel 5.18.

Tabel 5.18 Potensi Gas Metana di RPH Kota Surabaya

	В	С	D	E	F		
No	Jenis Hewan	Jumlah Hewan yang Dipotong ¹ (ekor/tahun)	Faktor Emisi ² (kg/ekor/tahun)	Potensi Gas Metana ³ (kg CH ₄ /tahun)	Potensi Gas Metana ³ (Gg CH ₄ /tahun)		
				CxD	E x 10 ⁻⁶		
1	Sapi	44.446	47	2.088.962	2,0890		
2	Kambing	9.294	5	46.470	0,0465		
3	Babi	45.043	1	45.043	0,0450		
	Total						

Sumber:

5.3.1.2 Pengelolaan Ternak

Data populasi ternak dari Dinas Ketahanan Pangan dan Pertanian Kota Surabaya diolah menggunakan rumus pengelolaan ternak. Hal ini disebabkan karena di wilayah-wilayah tertentu di Kota Surabaya masih ditemukan beberapa pemeliharaan hewan ternak, sehingga potensi gas metana ini dapat dihitung dari pengelolaan ternak. Pada perhitungan ini, digunakan data jumlah hewan ternak pada tahun 2020 yang didapatkan dari Dinas Ketahanan Pangan dan Pertanian Kota Surabaya. Hasil perhitungan selengkapnya dapat dilihat pada Tabel 5.19.

Tabel 5.19 Potensi Gas Metana dari Pengelolaan Ternak

Α	В	С	D	E	F
No	Jenis Hewan	Jumlah Hewan ¹ (ekor)	Faktor Emisi ² (kg/ekor/tahun)	Potensi Gas Metana ⁴ (kg CH ₄ /tahun)	Potensi Gas Metana ⁴ (Gg CH ₄ /tahun)
				CxD	D x 10 ⁻⁶
1	Sapi Potong	47	1	47	0,0000470
2	Sapi Perah	219	31	6789	0,00679
3	Kerbau	13	2	26	0,0000260
4	Kuda	79	2,19	173,01	0,000173
5	Kambing	810	0,22	178,20	0,000178

¹Rumah Potong Hewan Kota Surabaya, 2021

²Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya), 2012

³Hasil Perhitungan, 2021

Α	В	С	D	E	F
No	Jenis Hewan	Jumlah Hewan ¹ (ekor)	Faktor Emisi ² (kg/ekor/tahun)	Potensi Gas Metana ⁴ (kg CH ₄ /tahun)	Potensi Gas Metana ⁴ (Gg CH ₄ /tahun)
				CxD	D x 10 ⁻⁶
6	Domba	86	0,20	17,20	0,0000172
7	Kelinci	58	$(0.08)^3$	4,64	0,00000464
8	Ayam Buras	12.757	0,02	255,14	0,000255
9	Ayam Petelur	450	0,02	9	0,00000900
10	Itik	1.303	$(0.02)^3$	26,06	0,0000261
11	Burung Dara	4.999	$(0.02)^3$	99,98	0,000100
	•	Total			0,00763

Sumber:

Dari hasil perhitungan didapatkan hasil potensi gas metana sebesar 0,00763 Gg CH₄/tahun. untuk menghitung emisi dalam bentuk Gg CO₂/tahun maka jumlah tersebut perlu dikalikan 25 sebagai faktor konversi, sehingga emisi dari pengelolaan ternak yaitu sebesar 0,1906 Gg CO₂e/tahun.

5.3.2 Subsektor Pertanian

5.3.2.1 Emisi Karbondioksida (CO₂) dari Budidaya Tanaman Padi

Data Aktivitas:

- Sistem pengairan tadah hujan
 - Luas panen padi sawah dalam 1 tahun (A) = 1.164,1 ha
 Sumber : Dinas Ketahanan Pangan dan Pertanian Kota Surabaya, 2021

Dengan mengacu pada Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya) tahun 2012, data berikut digunakan untuk melakukan perhitungan emisi dari budidaya tanaman padi :

- Lama budidaya padi dalam 1 tahun (t) = 200 hari
- EF padi sawah dengan irigasi terus-menerus dan tanpa pengembalian bahan organik (EFc) = 1,30 kg CH₄/ha/hari

¹Dinas Ketahanan Pangan dan Pertanian Kota Surabaya, 2021

²Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya), 2012 ³IPCC, 2006

⁴Hasil Perhitungan, 2021

- Faktor skala lahan sawah tadah hujan (SFw) = 0,49
- Faktor skala rejim air sebelum periode budidaya (SFp) tidak digunakan karena tergenang sebelum penanaman <30 hari
- Jumlah pupuk kandang yang digunakan (ROA) = 2 ton/ha
- Faktor skala untuk jenis tanah oksisols (SFs) = 0,29
- Faktor skala varietas padi Ciherang (SFr) = 0,57
- Conversion factor for different types of organic amendment (CFOA) = 0,14 (pupuk kandang)

Tahapan Perhitungan:

Menghitung faktor skala untuk pupuk kandang

SFo =
$$(1 + ROA \times CFOA)^{0.59}$$

= $(1 + 2 ton/ha \times 0.14)^{0.59}$
= 1.1568

Menghitung faktor emisi harian

```
EFi = EFc x SFw x SFo x SFs x SFr
= 1,30 kg CH<sub>4</sub>/ha/hari x 0,49 x 1,1568 x 0,29 x 0,57
= 0,1218 kg CH<sub>4</sub>/ha/hari
```

Menghitung emisi metana dari lahan sawah

```
CH<sub>4</sub> rice = EFi x t x A x 10^{-6}

= 0,1218 kg CH<sub>4</sub>/ha/hari x 200 hari x 1164,1 ha x 10^{-6}

= 0,0284 Gg CH<sub>4</sub>/tahun

= 0,0284 Gg CH<sub>4</sub>/tahun x 25

= 0,7090 Gg CO<sub>2</sub>e/tahun
```

5.3.2.2 Emisi Karbondioksida (CO₂) dari Penggunaan Pupuk Urea

Penggunaan pupuk urea pada budidaya pertanian menyebabkan lepasnya CO_2 yang diikat selama proses pembuatan pupuk. Urea $(CO(NH_2)_2)$ diubah menjadi amonium (NH_4^+) , ion hidroksil (OH^-) , dan bikarbonat (HCO_3^-) dengan adanya air dan enzim urease. Mirip dengan reaksi tanah pada penambahan kapur, bikarbonat yang terbentuk selanjutnya berkembang menjadi CO_2 dan air. Jumlah konsumsi dan jenis pupuk dijelaskan pada tabel di bawah ini.

Tabel 5.20 Jumlah Konsumsi dan Jenis Pupuk

			Konsumsi	
No	Nama Pupuk	Konsumsi Pupuk Subsidi	Pupuk Bantuan	Total
No		(ton)	Dinas	(ton)
			(ton)	
1	Urea	606,4	3,004	609,404
2	Sp36	72	4	76
3	ZA	60	3,5	63,5
4	NPK	152	10,25	162,25
5	Organik	12	83,9	95,9

Sumber: Dinas Ketahanan Pangan dan Pertanian Kota Surabaya, 2021

Dari hasil perhitungan didapatkan emisi CO₂ dari pupuk urea adalah sebesar 121,8808 ton CO₂/tahun atau 0,1219 Gg CO₂/tahun. Cara perhitungannya sebagai berikut:

 CO_2 emission = M urea x EF urea

 $= 609,404 \text{ ton } \times 0,20$

 $= 121,8808 \text{ ton } CO_2/\text{tahun}$

 $= 0,1219 \text{ Gg CO}_2/\text{tahun}$

Untuk subsektor pertanian ini, selain perhitungan emisi dari penggunaan urea, seharusnya dapat pula dihitung emisi dinitrogen oksida (N_2O) baik langsung (*direct*) maupun tidak langsung (*indirect*) dari pengelolaan tanah akibat penambahan pupuk sintesis maupun organik. Namun dalam perhitungannya dibutuhkan data jumlah panen padi, sedangkan untuk laporan tahun ini belum tersedia data tersebut, sehingga tidak dilakukan perhitungan emisi N_2O dari pengelolaan tanah.

Setelah didapatkan hasil perhitungan emisi GRK di subsektor peternakan dan subsektor pertanian, selanjutnya dapat diketahui total emisi GRK pada sektor AFOLU di Kota Surabaya dengan menjumlahkan hasil-hasil tersebut sebagai berikut :

Emisi GRK subsektor peternakan

Fermentasi enterik = 54,5119 Gg CO₂/tahun

Pengelolaan ternak = 0,1906 Gg CO₂/tahun

Total emisi GRK subsektor peternakan

= 54,5119 Gg CO₂/tahun + 0,1906 Gg CO₂/tahun

= 54,7025 Gg CO₂/tahun

Emisi GRK subsektor pertanian

Budidaya tanaman padi = 0,7090 Gg CO₂/tahun Penggunaan pupuk urea = 0,1219 Gg CO₂/tahun

Total emisi GRK subsektor pertanian

- = 0,7090 Gg CO₂/tahun + 0,1219 Gg CO₂/tahun
- = 0,8308 Gg CO₂/tahun

Total emisi GRK sektor AFOLU

- = 54,7025 Gg CO₂/tahun + 0,8308 Gg CO₂/tahun
- = 55,5334 Gg CO₂/tahun

5.3.3 Lahan Mangrove Sebagai Penyerap CO₂

Ekosistem mangrove memiliki fungsi ekologis yang sangat penting terutama bagi wilayah pesisir. Salah satu fungsi ekologis mangrove yang berperan dalam upaya mitigasi pemanasan global adalah mangrove sebagai penyimpan karbon (Rachmawati *et al.*, 2014). Ekosistem mangrove memiliki kemampuan sebagai penyerap CO₂, sehingga hutan mangrove memiliki peran untuk mengurangi CO₂ di udara (Mardliyah *et al.*, 2019). Di Kota Surabaya, lahan mangrove tersebar di beberapa kecamatan. Adapun data luas mangrove di Kota Surabaya dapat dilihat pada Tabel 5.21.

Tabel 5.21 Luas Mangrove di Kota Surabaya

Lokasi	Luas Tutupan (ha)	Persentase Tutupan (%)	Kerapatan (Pohon/ha)
Kecamatan Benowo	143,39	5,35	3.383
Kecamatan Asemrowo	64,79	4,2	1.558,25
Kecamatan Kenjeran	52,54	0,69	2.633,5
Kecamatan Sukolilo	306,2	12,93	1.850
Kecamatan Mulyorejo	354,24	24,93	2.967
Kecamatan Rungkut	226,24	10,73	2.688,7
Kecamatan Gunung Anyar	89,61	0,92	2.933,5

Sumber: Dinas Lingkungan Hidup, 2021

Selanjutnya dapat dihitung kenaikan simpanan karbon biomassa menggunakan rumus yang mengacu pada Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya) tahun 2012 berikut:

$$\Delta CG = \Sigma_{ij} (A_{ij} \times \{G_{wij} \times (1 + R)\}) \times CF$$
 ... (17)

dimana:

 A_{ij} = Luas dari lahan (ha)

G_{wii} = Rata-rata tahunan pertumbuhan biomas (riap) atas permukaan (ton/ha tahun)

R = Fraksi/rasio biomassa bawah permukaan dan atas permukaan

CF = Fraksi karbon dalam berat kering

Untuk luas mangrove mengikuti data yang diperoleh dari Dinas Lingkungan Hidup Kota Surabaya tahun 2020. Adapun dengan mengacu pada Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya) tahun 2012, data berikut digunakan untuk melakukan perhitungan kenaikan simpanan karbon biomassa:

- Rata-rata tahunan pertumbuhan biomas (riap) atas permukaan (Gwij) = 0,98 ton/ha tahun
- Fraksi/rasio biomassa bawah permukaan dan atas permukaan = 0,24
- Fraksi karbon dalam berat kering = 0,47

Hasil perhitungannya dapat dilihat pada Tabel 5.23 berikut ini :

Tabel 5.22 Hasil Perhitungan Simpanan Karbon Biomassa

Lokasi	Luas Tutupan (ha)	Persentase Tutupan (%)	Kerapatan (Pohon/ha)	Simpanan Karbon Biomassa (ton C/ha)	Simpanan Karbon Biomassa (Gg C/ha)
Kecamatan Benowo	143,39	5,35	3.383	81,90	0,082
Kecamatan Asemrowo	64,79	4,2	1.558,25	37,00	0,037
Kecamatan Kenjeran	52,54	0,69	2.633,5	30,01	0,030
Kecamatan Sukolilo	306,2	12,93	1.850	174,88	0,175
Kecamatan Mulyorejo	354,24	24,93	2.967	202,32	0,202
Kecamatan Rungkut	226,24	10,73	2.688,7	129,22	0,129
Kecamatan Gunung Anyar	89,61	0,92	2.933,5	51,18	0,051
	Jumlah			706,51	0,707

Sumber: Hasil Perhitungan, 2021

Berdasarkan hasil perhitungan, simpanan karbon biomassa dari lahan mangrove di Kota Surabaya adalah sebesar 706,51 ton C/ha atau 0,707 Gg C/ha.

5.4 Analisis dan Pembahasan Sektor IPPU

5.4.1 Industri Produsen Keramik

PT Platinum Ceramic Industry digolongkan pada kategori sumber emisi dari sektor industri mineral. Emisi terkait proses dari keramik dihasilkan dari kalsinasi karbonat di tanah liat, serta penambahan aditif. Karbonat dipanaskan sampai suhu tinggi dalam kiln, menghasilkan oksida dan CO₂. Berikut langkah perhitungan emisinya.

Perhitungan emisi dari proses produksi keramik

1. Menghitung volume total keramik

Volume keramik = Luas keramik x tinggi asumsi keramik

 $= 13.728.192 \text{ m}^2/\text{tahun x 0,01 m}$

= 137.281,192 m³/tahun

2. Menghitung berat total keramik

Berat total keramik = volume keramik x massa jenis keramik

= 137.281,192 m³/tahun x 1.702 kg/m³

= 233.653.828 kg/tahun

= 233.653,828 ton/tahun

3. Emisi CO_2 = 10% x Berat total keramik x (0,85 EF_{ls} + 0,15 EF_{d})

= 10% x 233.653,828 ton/tahun x (0,85 x (0,43971 ton CO_2 /ton karbonat) + 0,15 x (0,47732 ton CO_2 /ton

karbonat))

 $= 10.405,81 \text{ ton } CO_2/\text{tahun}$

= 10,41 Gg CO₂/tahun

Jadi emisi CO₂ dari industri penghasil keramik adalah sebesar 10,41 Gg CO₂/tahun.

5.4.2 Industri Produsen Calcined Petroleum Coke

PT Yosomulyo Jajag sebagai perusahaan yang memproduksi calcined petroleum coke digolongkan dalam kategori sumber emisi dari sektor industri logam. Calcined petroleum coke merupakan residu yang berbentuk padatan hitam yang mengkilat dan merupakan produk akhir dari proses kondensasi dalam perengkahan minyak dan karbonisasi dalam tungku. Calcined petroleum coke terdiri dari 90% hingga 95% karbon, dan umumnya terbakar tanpa meninggalkan abu. Faktor emisi yang digunakan untuk menghitung emisi GRK dari calcined petroleum coke adalah US EPA Emission Factor Tahun 2014. Di bawah ini perhitungan emisi untuk calcined petroleum coke.

a) Perhitungan emisi untuk hasil produk berupa calcined petroleum coke

Emisi CO₂ = Berat total *calcined petroleum coke* x Faktor emisi CO₂

= $109.072,7 \text{ ton/tahun x } 3,072 \text{ kg CO}_2/\text{short ton}$

= 335.071,3 kg CO₂/tahun

= 0,335 Gg CO₂/tahun

Emisi CH₄ = Berat total *calcined petroleum coke* x Faktor emisi CH₄

= 109.072,7 ton/tahun x 960 g CH₄/short ton

= 104.709.792 g CH₄/tahun

= 0,105 Gg CH₄/tahun

Emisi N₂O = Berat total *calcined petroleum coke* x Faktor emisi N₂O

= 109.072,7 ton/tahun x 126 g N₂O/short ton

= 13.743.160,2 g N₂O/tahun

 $= 0.0137 \text{ Gg N}_2\text{O/tahun}$

b) Konversi Satuan

Mengkonversi satuan emisi CH₄ dan N₂O ke satuan emisi CO₂

Emisi CO₂ dari konversi CH₄ = 0,105 Gg CH₄/tahun x 25

= 2,618 Gg CO₂e/tahun

Emisi CO_2 dari konversi N_2O = 0,0137 Gg N_2O /tahun x 298

= 4,095 Gg CO₂e/tahun

Emisi CO₂ dari industri penghasil calcined petroleum coke

 $= 0.335 \text{ Gg CO}_2/\text{tahun} + 2.618 \text{ Gg CO}_2/\text{tahun} + 4.095 \text{ Gg CO}_2/\text{tahun}$

= 7,048 Gg CO₂/tahun

Jadi emisi CO₂ dari industri penghasil *calcined petroleum coke* adalah sebesar 7,048 Gg CO₂/tahun.

5.4.3 Industri Produsen Glassware

Pada proses produksi kaca, bahan baku utama yang mengeluarkan CO₂ selama proses peleburan adalah dari jenis karbonat yaitu batu kapur (CaCO₃), dolomit CaMg(CO₃)₂ dan soda ash (Na₂CO₃). Dalam industri ini jenis karbonat yang digunakan adalah batu kapur dan soda *ash*. Berikut merupakan perhitungan emisi dari proses produksi kaca.

a) Perhitungan emisi dari penggunaan bahan baku limestone

Emisi CO_2 = Berat total *limestone x* $EF_i \times F_i$

= 2.673 ton/tahun x 0,43971 ton CO₂/ton karbonat x 1

= 1.175 ton CO₂/tahun

= 1,175 Gg CO₂/tahun

b) Perhitungan emisi dari penggunaan soda ash

Emisi CO_2 = Berat total soda ash x EF_i x F_i

= 2.066 ton/tahun x 0,41492 ton CO₂/ton karbonat x 1

= 857,2 ton CO₂/tahun

= 0,857 Gg CO₂/tahun

c) Perhitungan emisi dari hasil produk utama (*glassware*)

Emisi CO_2 = Berat total produk utama x EF_i x (1 - CR)

= 22.815 ton/tahun x 0,2 ton CO_2 /ton glass x (1 – 0,5)

= 2.281,5 ton CO₂/tahun

= 2,2815 Gg CO₂/tahun

d) Perhitungan emisi dari hasil produk sampingan (cullet)

Emisi CO_2 = Berat total produk sampingan x EF_i x (1 - CR)

= $7.842 \text{ ton/tahun x } 0.2 \text{ ton CO}_2/\text{ton } glass x (1 - 0.5)$

= 784,2 ton CO₂/tahun

= 0,7842 Gg CO₂/tahun

e) Perhitungan Total

Emisi CO₂ dari industri glassware

= 1,175 Gg CO₂/tahun + 0,857 Gg CO₂/tahun + 0,7842 Gg CO₂/tahun +

2,2815 Gg CO₂/tahun + 0,7842 Gg CO₂/tahun

= 5,1 Gg CO₂/tahun

Jadi emisi CO₂ dari industri penghasil *glassware* adalah sebesar 5,1 Gg CO₂/tahun.

5.4.4 Industri Produsen Conveyor Belt dan Rubber Article

Perhitungan emisi pada proses produksi yang menghasilkan *conveyor belt* dan *rubber article* ini faktor emisi yang digunakan tidak dari IPCC GL 2006, melainkan dari jurnal Jawit dkk, 2010. Berikut merupakan perhitungan emisi untuk *conveyor belt* dan *rubber article*.

Emisi CO₂ = Total produk (ton/tahun) x faktor emisi CO₂

= 806 ton/tahun x 13 ton CO_2 /ton produk x 10^{-3}

= 10,478 Gg CO₂/tahun

Jadi emisi CO₂ dari industri penghasil *conveyor belt* dan *rubber article* adalah sebesar 10,478 Gg CO₂/tahun.

5.4.5 Industri Produsen Plate Baja

Perhitungan emisi pada industri ini tidak bersumber dari IPCC GL 2006, melainkan dari *paper Worldsteel Association*. Berikut merupakan perhitungan emisi untuk *plate* baja.

Perhitungan emisi *plate* baja

Emisi CO₂ = Total *plate* baja yang diproduksi (ton/tahun) x faktor emisi CO₂

= $162.517,22 \text{ ton/tahun x } 1,85 \text{ ton CO}_2/\text{ton baja x } 10^{-3}$

= 300,66 Gg CO₂/tahun

Jadi emisi CO₂ dari industri penghasil *plate* baja adalah sebesar 300,66 Gg CO₂/tahun.

Di bawah ini merupakan tabel hasil perhitungan emisi CO₂ dari sektor IPPU.

Tabel 5.23 Hasil Perhitungan Emisi CO₂ dari Sektor IPPU

No	Nama	Produksi	Total produksi	Satuan	Emisi CO ₂	
INO	Perusahaan	Flouuksi	Total produksi	Satuari	(Gg CO ₂ /tahun)	
	PT Platinum	Clay	220.614	ton/tahun		
1	1 Ceramic Industry	Keramik	13.728.192	m²/tahun	10,41	
2	PT Yosomulyo	Green petroleum coke	123.645,12	ton/tahun	7,0483	
	Jajag	Calcined petroleum coke	109.072,7	ton/tahun	7,0400	
		Limestone	2.673	ton/tahun		
		Pasir kwarsa	17.063	ton/tahun		
	PT Kedawung	Cullet / beling	7.842	ton/tahun		
3	Subur	Soda ash	2.066	ton/tahun	5,1	
	Cabai	Al(OH) ₂	397	ton/tahun		
		Produksi utama	22.815	ton/tahun		
		Produk sampingan (Cullet)	7.842	ton/tahun		
4	PT Karet Ngagel	Conveyor Belt dan Rubber	806	ton/tahun	10,478	
·	Surabaya	Article	333	torijtariari	10, 17 0	
5	PT Gunawan	Slab	187.110	ton/tahun	300,66	
	Dianjaya Steel	Plate Baja 162.517		ton/tahun	333,33	
		Total			333,687	

Sumber: Hasil Perhitungan, 2021

Berdasarkan tabel di atas emisi CO₂ yang dihasilkan dari produksi keramik PT Platinum *Ceramic Industry* adalah sebesar 10,41 Gg CO₂/tahun. PT Yosomulyo Jajag yang memproduksi *calcined petroleum coke* menghasilkan emisi CO₂ sebesar 7,0483 Gg CO₂/tahun. PT Kedawung Subur yang memproduksi *glassware* sebagai produk

utama menghasilkan emisi sebesar 5,1 Gg CO₂/tahun. PT Karet Ngagel Surabaya yang menghasilkan emisi dari hasil produksi *conveyor belt* dan *rubber article* sebesar 10,478 Gg CO₂/tahun. Serta PT Gunawan Dianjaya Steel yang memproduksi *plate* baja menghasilkan emisi sebesar 300,66 Gg CO₂/tahun. Jadi total emisi CO₂ yang dihasilkan dari sektor IPPU adalah sebesar 333,687 Gg CO₂/tahun.

5.5 Program Kampung Iklim (PROKLIM) sebagai Adaptasi Dampak Emisi GRK

Program Kampung Iklim berlingkup nasional yang dikelola oleh Kementerian Lingkungan Hidup dan Kehutanan Republik Indonesia dalam rangka meningkatkan ketertiban masyarakat dan pemangku kepentingan lain untuk meningkatkan ketahanan iklim, menurunkan emisi, atau meningkatkan serapan Gas Rumah Kaca (GRK). Melalui pelaksanaan Proklim, Pemerintah memberikan penghargaan terhadap masyarakat di lokasi tertentu yang telah melaksanakan upaya adaptasi dan mitigasi perubahan iklim secara berkelanjutan. Adapun tahapan kegiatan Proklim yaitu:

- Identifikasi kerentanan dan risiko perubahan iklim (dapat menggunakan instrumen yang sudah ada)
- 2. Identifikasi sumber emisi gas rumah kaca
- Pengembangan dan peningkatan kapasitas masyarakat dan kelembagaan masyarakat
- Penyusunan rencana aksi adaptasi dan mitigasi perubahan iklim di tingkat tapak berbasis masyarakat
- 5. Pelaksanaan adaptasi dan mitigasi perubahan iklim di tingkat tapak berbasis masyarakat
- 6. Peningkatan kapasitas akses sumberdaya, pendanaan, teknologi adaptasi dan mitigasi perubahan iklim
- 7. Pemantauan dan evaluasi pelaksanaan adaptasi dan mitigasi perubahan iklim Contoh aksi adaptasi perubahan iklim antara lain:
 - 1. Pemanenan air hujan
 - 2. Pembuatan lubang biopori
 - 3. Sumur resapan
 - 4. Rancang bangun adaptif
 - 5. Peningkatan ketahan pangan
 - 6. Pengelolaan pesisir
 - 7. Penanaman pohon

Contoh aksi adaptasi perubahan iklim antara lain:

1. Pengomposan

- 2. IPAL komunal
- 3. Panel surya
- 4. Pemanfaatan mikrohidro
- 5. Penggunaan pupuk kandang
- 6. Reuse, reduce, recycle

Kampung Iklim adalah lokasi yang berada di wilayah administratif paling rendah setingkat rukun warga atau dusun dan paling tinggi setingkat kelurahan atau desa, atau wilayah yang masyarakatnya telah melakukan upaya adaptasi dan mitigasi perubahan iklim secara berkesinambungan. Persyaratan umum yang harus dipenuhi suatu lokasi untuk dapat diusulkan menjadi lokasi Kampung Iklim adalah sebagai berikut:

- Aksi lokal adaptasi dan mitigasi perubahan iklim pada lokasi yang diusulkan telah ada dan dilaksanakan secara berkelanjutan selama lebih dari 2 tahun.
- 2. Kelompok masyarakat sebagai penggerak kegiatan telah terbentuk kelembagaannya dan berjalan secara aktif di lokasi yang diusulkan serta adanya berbagai aspek pendukung yang dapat menjamin keberlanjutan pelaksanaan dan pengembangan kegiatan adaptasi dan mitigasi perubahan iklim di tingkat lokal.

Pelaksanaan Proklim mengacu pada Peraturan Menteri Lingkungan Hidup dan Kehutanan Nomor 84 tahun 2016 tentang Program Kampung Iklim, dimana di dalamnya terkandung komponen utama, syarat pengusulan, penilaian dan kategori Proklim. Dalam pertauran menteri tersebut juga disinnggung bahwa Proklim dapat dikembangkan dan dilaksanakan pada wilayah administratif paling rendah setingkat RW atau dusun dan paling tinggi setingkat kelurahan atau desa. Kota Surabaya mengimplementasikan kegiatan Proklim Keputusan didukung dengan Gubernur Jawa Timur Nomor 188/196/KPTS/013/2017 tentang Tim Koordinator Program Kampung Iklim Provinsi Jawa Timur. Dengan adanya Proklim, diharapkan dapat secara signifikan mengurangi tingkat dan dampak emisi gas rumah kaca di Kota Surabaya.

BAB 6

REKOMENDASI UPAYA PENGENDALIAN GAS RUMAH KACA (GRK)

Dalam upaya mengendalikan GRK maka perlu identifikasi sumber emisi dan potensi penurunan emisinya. Dalam subab ini, acuan yang digunakan dalam merekomendasikan upaya pengendalian GRK adalah item-item yang terkandung dalam RAN dan RAD Penurunan Emisi GRK. Secara umum, rekomendasi upaya penurunan emisi gas rumah kaca (GRK) sebagai berikut :

- Meningkatkan kesadaran dan pemahaman tentang pentingnya kebijakan penurunan emisi. Misalnya dengan pendekatan kepada pemangku kepentingan, jajaran manajemen perusahaan, anggota parlemen, dan eksekutif untuk sama-sama membangun visi dan misi penurunan emisi.
- Meningkatkan mekanisme koordinasi dan sinergitas antarbidang untuk mendukung kebijakan efisiensi energi.
- Memasukkan kriteria efisiensi energi ke dalam Standard Operating Procedure (SOP)
 perusahaan dan perkantoran. Langkah-langkah efisiensi energi antara lain adaptasi
 bahan bakar dan kendaraan yang bersih, serta menggunakan energi terbarukan.
- Integrasi efisiensi energi dengan sektor-sektor yang relevan seperti transportasi dan industri. Hal tersebut dapat dilaksanakan dengan Strategic Environmental Assessment (adaptasi dari Asian Development Bank, 2018).
- Memperkuat pencegahan dan pengendalian emisi serta instrumen ekonomi dan kebijakan.
- Memperkuat kapasitas penegakan hukum dan peraturan mengenai kualitas udara.
- Pelaksanaan inventarisasi emisi GRK perlu rutin dilakukan setiap tahun demi memenuhi amanat undang-undang dan juga mengetahui pertumbuhan emisi setiap tahun. Dari inventarisasi tersebut bisa dirumuskan langkah-langkah strategis yang efektif untuk mulai melakukan sosialisasi kebijakan adaptasi dan yang paling penting adalah mitigasi untuk menurunkan laju pertumbuhan emisi GRK.
- Memasukkan syarat pada green building pada procurement proyek pembangunan di lingkungan pemerintah daerah.
- Terkait program kampung iklim (Proklim) di Surabaya, perlu dilakukan analisa lebih lanjut mengenai kontribusi lokasi Proklim dalam rangka penurunan emisi.
- Peningkatan jumlah lokasi Proklim di Kota Surabaya.
- Perlu adanya dukungan kebijakan dari daerah terkait pengendalian emisi GRK di Kota Surabaya.

- Kota Surabaya perlu menentukan target penurunan emisi GRK mengacu pada target nasional dan provinsi.
- Adanya sinkronisasi dan validasi data terutama yang diperoleh dari industri sebelum dilakukan perhitungan emisi GRK agar hasil perhitungan valid.

Secara khusus, rekomendasi upaya penurunan emisi GRK pada setiap sektor akan dijelaskan pada subbab di bawah ini.

6.1 Rekomendasi Penurunan GRK Sektor Energi

Emisi yang dihitung berasal dari proses pembakaran bahan bakar baik dari sumber bergerak maupun dari sumber tidak bergerak. Upaya penurunan energi diutamakan pada modifikasi proses baik pada sumber bergerak maupun sumber tidak bergerak agar dapat melakukan proses dengan menggunakan bahan bakar yang lebih ramah lingkungan. Jadi titik beratnya adalah upaya optimasi atau upaya mengganti bahan bakar dengan bahan bakar yang nilai emisinya lebih rendah, dan itu berlaku untuk semua sumber bergerak (kendaraan) dan tidak bergerak (industri). Namun demikian, permasalahan bahan bakar dari sumber kendaraan cukup rumit karena sifatnya nasional dan melibatkan banyak kepentingan, terutama industri. Salah satu poin utama yang dapat dilakukan oleh pemerintah setempat, dalam hal ini Pemerintah Kota Surabaya adalah pemanfaatan zona khusus dimana kendaraan harus diuji emisi dulu sebelum melewati zona tersebut. Hanya kendaraan lulus uji emisi yang dapat melintasi zona tersebut. Uji emisi bisa dilakukan onsite, atau offsite dimana kendaraan bisa menunjukkan sertifikat lulus uji emisi kepada petugas zona tersebut.

Optimasi energi merupakan hal yang cukup krusial untuk mengurangi emisi, salah satu jalannya adalah melalui sistem manajemen energi, ISO 50001. Pemerintah Kota Surabaya bisa berkoordinasi atau menghimbau kepada industri untuk menerapkan ISO 50001, minimal agar mereka diaudit energi. Tujuan akhirnya tidak hanya penurunan emisi namun juga efisiensi perusahaan yang berujung pada keuntungan secara finansial pada jangka panjang. Sosialisasi kegiatan ini bisa melalui berbagai macam komunikasi baik resmi maupun tidak resmi (personal). Komunikasi resmi dapat melalui kegiatan sosialisasi, atau workshop dengan mengundang bantuan dari tenaga ahli energi. Pada Tabel 5.8, terdapat subsektor energi yang menghasilkan emisi paling besar yaitu pada penggunaan bahan bakar untuk sumber tidak bergerak.

6.2 Rekomendasi Penurunan GRK Sektor Limbah

Emisi yang dihitung berasal dari limbah padat dan limbah cair yang didapat dari informasi jumlah penduduk. Upaya penurunan GRK harus dilakukan secara bersama-sama

melalui kerja sama yang baik dari semua *stakeholder* seperti pemerintah kota hingga rumah tangga, industri, maupun individu. Kegiatannya mulai dari tahap inventarisasi, perencanaan hingga implementasi, meliputi sebagai berikut :

- 1. Kajian inventarisasi GRK sektor limbah padat dan limbah cair setiap tahun. Fungsinya untuk menentukan laju pertumbuhan emisi GRK yang kemudian dijadikan sebagai baseline laju peningkatan emisi. Upaya penurunan GRK dianggap berhasil jika dapat mereduksi laju peningkatan emisi. Kegiatan ini dapat diinisiasi dan dilakukan oleh Pemerintah Kota Surabaya, dapat pula bekerja sama dengan lembaga lain.
- 2. Penyusunan norma, standar, prosedur pengelolaan sampah yang dijalankan menurut sistem manajemen yang baik pada TPA maupun TPS.
- 3. Peningkatan kapasitas pengelolaan sampah.
- 4. Peningkatan pemanfaatan sampah yang memungkinkan untuk dijadikan kompos, arang atau briket.
- 5. Endpoint: pengelolaan sampah yang lebih baik dengan prinsip *Reduce, Reuse, and Recycle* (3R).

6.3 Rekomendasi Penurunan GRK Sektor AFOLU

Emisi yang dihitung berasal dari proses peternakan, pertanian dan/atau kegiatan tata guna lahan lainnya. Namun demikian, upaya penurunan GRK secara umum meliputi tapi tidak terbatas pada :

- 1. Pengumpulan data yang di*update* secara berkala, sebagai contoh, persentase lahan sawah irigasi, lahan mangrove sebagai penyerap CO₂ sehingga dapat dijadikan *baseline* untuk inventarisasi selanjutnya.
- 2. Pemanfaatan metana yang ditimbulkan dari kegiatan peternakan (termasuk di dalamnya RPH), namun demikian kegiatan ini perlu kajian terlebih dahulu.
- 3. Pemanfaatan kotoran ternak sebagai pupuk pertanian.
- 4. Memperbanyak tanaman yang ditanam dengan sistem lahan vertikal.
- 5. Memperbanyak simpanan karbon biomassa dari lahan mangrove di Kota Surabaya. Berdasarkan data luas lahan mangrove dari Dinas Lingkungan Hidup Kota Surabaya Tahun 2021, maka perhitungan simpanan karbon biomassa Kota Surabaya tahun 2020 adalah sebesar 706,51 ton C/ha.
- 6. Untuk inventarisasi selanjutnya diharapkan ada data jumlah panen padi sehingga dapat dihitung emisi N₂O *direct* maupun *indirect* dari pengelolaan tanah.

6.4 Rekomendasi Penurunan GRK Sektor IPPU

Emisi yang dihitung berasal dari proses produksi industri. Strategi teknis yang efektif untuk menurunkan GRK sangat bergantung pada perusahaan terkait karena perusahaan tersebut yang lebih mengetahui teknologi terkini yang lebih ramah lingkungan terkait proses produksi produknya masing-masing. Namun demikian, upaya penurunan GRK secara umum meliputi tapi tidak terbatas pada:

- 1. Perlu ada terobosan kebijakan teknis untuk mengurangi emisi CO₂. Sebagai contoh, Dinas Lingkungan Hidup Surabaya menyelenggarakan penyuluhan dan workshop spesifik terkait industri tertentu mengenai dampak perubahan iklim, dan strategi adaptasi mitigasinya. Kegiatan tersebut dapat menjadi titik awal munculnya kepedulian industri untuk semakin penasaran dan termotivasi mewujudkan dan mengimplementasikan proses produksi yang lebih ramah lingkungan. Pada dasarnya, secara jangka panjang, proses produksi yang menggunakan asas pencegahan pencemaran memiliki keuntungan finansial. Ini yang perlu ditanamkan agar industri semakin tertarik menanamkan modal guna memodifikasi proses produksinya untuk menurunkan emisi GRK.
- 2. Peningkatan kapasitas pemerintah dan pelaku industri dalam kegiatan mitigasi dampak perubahan iklim.
- 3. Tersusunnya sistem *database* dan inventori strategi pengurangan emisi CO₂ di berbagai sektor industri di Surabaya. Untuk itu, Dinas Lingkungan Hidup Surabaya menjalin komunikasi dengan industri-industri terkait mengenai upaya apa saja yang telah mereka lakukan. Tujuannya adalah tidak hanya *database*, namun agar Dinas Lingkungan Hidup Surabaya memiliki informasi lengkap dimana letak atau posisi dimana Dinas Lingkungan Hidup Surabaya bisa membantu, baik dalam hal penyuluhan maupun pendampingan, ataupun pendampingan tenaga ahli di bidang industri tertentu.
- 4. Terlaksananya pemantauan dan evaluasi program mitigasi untuk berbagai macam industri di Surabaya
- 5. Jumlah penggunaan pupuk disesuaikan dengan kebutuhan lahan pertanian dan varietas yang ditanam agar lebih efisien.

6.5 Rencana Aksi Daerah (RAD) Penurunan GRK berdasarkan Peraturan Gubernur Jawa Timur Nomor 67 Tahun 2012

Mengacu pada Peraturan Gubernur Jawa Timur Nomor 67 Tahun 2012, rencana aksi daerah Provinsi Jawa Timur dalam rangka penurunan emisi gas rumah kaca dapat dilihat di bawah ini.

6.5.1 Bidang Energi

Kebijakan yang dilaksanakan untuk menurunkan GRK:

- 1. Peningkatan penghematan energi
- 2. Penggunaan bahan bakar yang lebih bersih (fuel switching)

- 3. Peningkatan pneggunaan energi baru dan terbarukan
- Pemanfaatan teknologi bersih baik untuk pembangkit listrik dan sarana transportasi
- 5. Pengembangan transportasi massal yang berkelanjutan

Rencana strategi:

- 1. Menghemat pengguanaan energi fosil baik melalui penggunaan teknologi yang lebih bersih dan efisien
- 2. Mendorong pemanfaatan energi baru terbarukan skala kecil dan menengah
- 3. Mengurangi kebutuhan akan perjalanan terutama daerah perkotaan
- 4. Menggeser pola penggunaan kendaraan pribadi
- Meningkatkan efisiensi energi dan pengurangan karbon pada kendaraan bermotor pada sarana transportasi
- 6. Mengurangi kemacetan di area perbatasan lalu lintas
- 7. Terwujudnya transportasi multi moda angkutan barang dari kawasan ke pelabuhan tanjung perak
- 8. Terbangunnya fasilitas pedestrian bagi pejalan kaki dan jalur sepeda di jalan raya wilayah perkotaan

6.5.2 Bidang IPPU

Kebijakan yang dilakukan untuk menurunkan GRK adalah peningkatan pertumbuhan industri kecil dan menengah yang menerapkan produksi bersih (*clean production*). Strategi untuk mewujudkan kebijakan tersebut yaitu:

- 1. Melaksanakan penerapan produksi bersih khususnya pada IKM yang padat energi
- 2. Memberikan insentif pada IKM yang menerapkan produksi bersih
- 3. Sosialisasi penggunanaan bahan baku ramah lingkungan
- 4. Penerapan prinsip 3R (Reduce, Reuse, and Recycle)

Kegiatan pendukung untuk pengurangan emisi GRK bidang IPPU adalah pengembangan kemitraan dengan perguruan tinggi, masyarakat setempat, Lembaga Swadaya Masyarakat (LSM), dan dunia usaha dalam perlindungan dan pelestarian sumber daya alam.

6.5.3 Bidang Pengelolaan Limbah

Kebijakan yang dilaksanakan untuk menurunkan GRK adalah:

- Penurunan emisi GRK dari Tempat Penimbunan Akhir (TPA) limbah padat/sampah
- 2. Peningkatan pengelolaan limbah cair domestik

- 3. Peningkatan pengelolaan limbah industri yang berpotensi menghasilkan GRK
- 4. Pengembangan teknologi pengelolaan limbah dan efisiensi produk limbah dengan prinsip-prinsip daur ulang (*Reduce, Reuse, and Recycle*)
- 5. Pengembangan sistem manajemen pengelolaan limbah industri, limbah domestik, dan sektor lainnya

Strategi yang dilakukan untuk menunjang kebijakan :

- 1. Meningkatkan manajemen pengelolaan limbah padat/sampah di TPA
- 2. Melaksanakan pembangunan dan rehabilitasi TPA terpadu dengan sistem controlled landfill dan sanitary landfill secara bertahap
- 3. Pengurangan timbulan sampah melalui 3R (Reduce, Reuse, and Recycle)
- 4. Meningkatkan penerapan teknologi produsi bersih dalam pengelolaan limbah industri
- 5. Meningkatkan pemanfaatan limbah menjadi energi alternatif ramah lingkungan
- 6. Mengembangkan panduan mutu dan teknologi pengelolaan limbah
- 7. Mengkatkan pengawasan dan *monitoring* pengelolaan limbah
- 8. Melakukan uji kualitas air limbah dan uji udara emisi secara periodik dan berkelanjutan

6.5.4 Bidang AFOLU

Kebijakan dan strategi untuk menurunkan GRK:

- 1. Meningkatkan penanaman pohon yang mampu menyerap GRK
- 2. Penelitian dan pengembangan teknologi pertanian.
- 3. Pengembangan program pendukung budidaya pertanian ramah lingkungan
- 4. Pengembangan aplikasi kualitas pupuk kompos organik dengan dosis mikroba terhadap tanaman hortikultura dan padi

6.6 Rencana Aksi Nasional (RAN) Penurunan GRK berdasarkan Peraturan Presiden Nomor 61 Tahun 2011

Rencana aksi bidang AFOLU:

- 1. Perbaikan dan pemeliharaan jaringan irigasi
- Terlaksananya penggunaan teknologi untuk melindungi tanaman pangan dari gangguan organisme pengganggu tanaman dan dampak perubahan iklim
- 3. Menerapkan teknologi pengelolaan lahan dan budidaya pertanian dengan emisi GRK serendah mungkin dan mengabsorbsi CO₂ secara optimal
- 4. Menstabilkan elevasi muka air dan memperlancar sirkulasi air pada jaringan irigasi

Rencana aksi bidang energi:

- 1. Melakukan program kemitraan konservasi energi bersama swasta/masyarakat
- Terlaksananya implementasi teknologi hemat energi pada peralatan rumah tangga
- 3. Penggunaan gas alam sebagai bahan bakar angkutan umum perkotaan
- 4. Terlaksananya peremajaan armada angkutan umum sesuai desain standar yang rendah emisi
- 5. Membangun Non Motorized Transport (pedestrian dan jalur sepeda)
- 6. Terlaksananya pemberian label kepada semua kendaraan baru menurut konsumsi bahan bakar (per 100 km) dan emisi CO₂ (dalam g/km)
- 7. Terlaksananya pembatasan kecepatan pada seluruh jalan tol untuk menurunkan emisi

Rencana aksi bidang IPPU:

- 1. Memberikan insentif pada program efisiensi energi
- 2. Penghapusan BPO pada 4 sektor (refrigerant, foam, chiller, dan pemadam api)

Rencana aksi bidang limbah:

- Tersedianya sistem pengelolaan air limbah sistem terpusat skala kota (offsite) dan setempat (onsite)
- 2. Peningkatan kapasitas kelembagaan dan peraturan di daerah
- 3. Perbaikan proses pengelolaan sampah di Tempat Pemrosesan Akhir (TPA)

6.7 Rekomendasi berdasarkan Peraturan Walikota Kota Surabaya Nomor 36 Tahun 2020 tentang Rencana Kerja Pemerintah Kota Surabaya Tahun 2021

Program kegiatan dalam upaya penurunan emisi GRK secara umum antara lain :

- 1. Program pengawasan dan pengendalian lalu lintas dan angkutan, yaitu meningkatkan persentase kelulusan uji emisi kendaraan bermotor
- Program upaya konservasi energi/pembinaan pengusahaan konservasi energi, yaitu meningkatkan jumlah kegiatan/usaha yang mendapatkan pembinaan pengusahaan konservasi energi
- 3. Koordinasi, sinkronisasi, dan pengendalian emisi GRK, mitigasi, dan adaptasi perubahan iklim

6.8 Rekomendasi berdasarkan RPJMN 2020-2024

Program kegiatan dalam upaya penurunan emisi GRK yang sesuai antara lain:

- 1. Pemanfaatan teknologi yang lebih efisien dan rendah emisi
- 2. Penurunan emisi dan intensitas emisi GRK melalui pembangunan rendah karbon
- 3. Meningkatkan pasokan bahan bakar nabati dari bahan baku rendah karbon

- 4. Peningkatan produktivitas dan efisiensi pertanian menuju pertanian berkelanjutan
- 5. Pengelolaan sampah rumah tangga dan pengelolaan limbah cair
- 6. Peningkatan jumlah industri yang terpantau memenuhi baku mutu emisi

6.9 Penanaman Pohon Sebagai Agen Pereduksi CO₂

Pepohonan memiliki fungsi ekologis yaitu sebagai penambat karbon dan mengurangi polusi kendaraan bermotor (Kiran & Kiranny, 2011). Emisi CO₂ dapat diserap oleh tanaman atau yang disebut sebagai ruang terbuka hijau. Pembangunan kawasan hijau di daerah perkotaan merupakan langkah konkret yang penting dilakukan. Berikut ini adalah Tabel 6.1 merupakan beberapa jenis tanaman yang dapat menyerap CO₂:

Tabel 6.1 Jenis-jenis tanaman dan kemampuan daya serap CO₂

	Nama Jenis		Daya Serap	
No.	Tumbuhan	Nama Ilmiah	CO ₂	Sumber
	rambanan		(g/jam.pohon)	
1	Daun Kupu-kupu	Bauhinia purpurea	1.331,38	
2	Pulai	Alstonia scholaris	1.319,35	
3	Angsana	Pterocarpus indicus	310,52	(Gratimah,
4	Mahoni	Swietenia macrophylla	3.112,43	2009)
5	Flamboyan	Delonix regia	59,96	2000)
6	Jambu Biji	Syzygium malaccense	44,59	
7	Beringin	Ficus benjamina	1.146,51	
8	Tabebuia Kuning	Tabebuia chrysantha	24,2	
9	Karet Kebo	Ficus elastica	22	
10	Keben	Barringtonia asiatica	165	
11	Kol Banda	Pisonia alba	22	
12	Cemara Laut	Casuarina equisetifolia	45	
13	Nagasari	Thevetia peruviana	96,9	
14	Dadap Merah	Erythrina cristagalli	165	Purwaningsih,
15	Belimbing Wuluh	Averrhoa bilimbi	6,33	2007)
16	Palem Phoenix	Phoenix roebelenii	0,39	2007)
17	Palem Kuning	Dypsis lutescens	0,39	
18	Palem Ekor Tupai	Wodyetia bifurcata	0,39	
19	Bintaro	Cerbera manghas	96,9]
20	Akasia	Acacia auriculiformis	165]
21	Kersen	Muntingia calabura	0,6]
22	Pandan Bali	Dracaena draco	0,39	

No.	Nama Jenis Tumbuhan	Nama Ilmiah	Daya Serap CO ₂ (g/jam.pohon)	Sumber
23	Bambu Cina	Bambusa multiplex	0,39	
24	Sukun	Artocarpus altilis	22	
25	Tabebuia Pink	Tabebuia rosea	24,2	
26	Kembang Kecrutan	Spathodea campanulata	24,16	
27	Kacang Amazon	Bunchosia armeniaca	6,33	
28	Dadap Hijau	Erythrina variegata	165	
29	Lamtoro	Leucaena leucocephala	165	
30	Asam Landi	Pithecellobium dulce	165	
31	Palem Kenari	Phoenix Sylvestris	0,39	
32	Sawo Manila	Manilkara zapota	96,9	
33	Kayu Bejaran	Lannea coromandelica	45	
34	Palem Bambu	Chamaedorea seifrizii	0,39	
35	Ketapang Kencana	Terminalia mantaly	24,16	
36	Trembesi	Samanea saman	3.252,10	
37	Nangka	Arthocarpus heterophyllus	22	(Dahlan, 2007)
38	Mangga	Mangifera indica	51,96	(Karyadi,
39	Tanjung	Mimusops elengi	67,58	2005)
40	Jati	Tectona grandis	12,41	2000)
41	Glodokan	Polyalthia longifolia	719,74	
42	Pucuk Merah	Oleina syzygium	155,58	(Yusuf, 2015)
43	Palem Putri	Veitchia merrillii	32,6	

6.10 Lahan Mangrove sebagai Simpanan Karbon

Ekosistem mangrove memiliki fungsi ekologis yang sangat penting terutama bagi wilayah pesisir. Salah satu fungsi ekologis mangrove yang berperan dalam upaya mitigasi pemanasan global adalah mangrove sebagai penyimpan karbon (Rachmawati *et al.*, 2014). Ekosistem mangrove memiliki kemampuan sebagai penyerap CO₂, sehingga hutan mangrove memilii peran untuk mengurangi CO₂ di udara (Mardliyah *et al.*, 2019). Di Kota Surabaya, lahan mangrove tersebar di beberapa kecamatan. Adapun data luas mangrove di Kota Surabaya dapat dilihat pada Tabel 6.2.

Tabel 6.2 Luas Mangrove di Kota Surabaya

Lokasi	Luas Tutupan (ha)	Persentase Tutupan (%)	Kerapatan (Pohon/ha)
Kecamatan Benowo	143,39	5,35	3.383
Kecamatan Asemrowo	64,79	4,2	1.558,25
Kecamatan Kenjeran	52,54	0,69	2.633,5
Kecamatan Sukolilo	306,2	12,93	1.850
Kecamatan Mulyorejo	354,24	24,93	2.967
Kecamatan Rungkut	226,24	10,73	2.688,7
Kecamatan Gunung Anyar	89,61	0,92	2.933,5

Sumber: Dinas Lingkungan Hidup, 2021

Selanjutnya dapat dihitung kenaikan simpanan karbon biomassa menggunakan rumus yang mengacu pada Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya) tahun 2012 berikut :

$$\Delta$$
CG = Σ_{ii} (A_{ii} x {G_{wii} x (1 + R)}) x CF

dimana:

A_{ii} = Luas dari lahan (ha)

G_{wii} = Rata-rata tahunan pertumbuhan biomas (riap) atas permukaan (ton/ha tahun)

R = Fraksi/rasio biomassa bawah permukaan dan atas permukaan

CF = Fraksi karbon dalam berat kering

Untuk luas mangrove mengikuti data yang diperoleh dari Dinas Lingkungan Hidup Kota Surabaya tahun 2020. Adapun dengan mengacu pada Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional dari Kementerian Lingkungan Hidup (Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya) tahun 2012, data berikut digunakan untuk melakukan perhitungan kenaikan simpanan karbon biomassa:

- Rata-rata tahunan pertumbuhan biomas (riap) atas permukaan (Gwij) = 0,98 ton/ha tahun
- Fraksi/rasio biomassa bawah permukaan dan atas permukaan = 0,24
- Fraksi karbon dalam berat kering = 0,47

Berdasarkan hasil perhitungan, simpanan karbon biomassa dari lahan mangrove di Kota Surabaya adalah sebesar 706,51 ton C/ha atau 0,707 Gg C/ha. Hasil perhitungannya dapat dilihat pada Tabel 6.3 berikut ini :

Tabel 6.3 Hasil Perhitungan Simpanan Karbon Biomassa

Lokasi	Luas Tutupan (ha)	Persentase Tutupan (%)	Kerapatan (Pohon/ha)	Simpanan Karbon Biomassa (ton C/ha)	Simpanan Karbon Biomassa (Gg C/ha)
Kecamatan Benowo	143,39	5,35	3.383	81,90	0,082
Kecamatan Asemrowo	64,79	4,2	1.558,25	37,00	0,037
Kecamatan Kenjeran	52,54	0,69	2.633,5	30,01	0,030
Kecamatan Sukolilo	306,2	12,93	1.850	174,88	0,175
Kecamatan Mulyorejo	354,24	24,93	2.967	202,32	0,202
Kecamatan Rungkut	226,24	10,73	2.688,7	129,22	0,129
Kecamatan Gunung Anyar	89,61	0,92	2.933,5	51,18	0,051
	706,51	0,707			

Sumber: Hasil Perhitungan, 2021

6.11 Klasifikasi Rencana Aksi Daerah sebagai Kegiatan Inti dan Kegiatan Pendukung 6.11.1 Rencana Aksi Daerah sebagai Kegiatan Inti

Sektor atau kegiatan inti dari kajian inventarisasi emisi gas rumah kaca Kota Surabaya meliputi empat (4) bidang, yaitu sektor energi, sektor limbah, sektor IPPU, dan sektor AFOLU. Dari pembahasan sebelumnya telah diketahui besarnya emisi GRK Kota Surabaya tahun 2020 dan rencana aksi daerah untuk mengurangi emisi GRK. Penurunan emisi GRK tidak dapat dilakukan oleh satu pihak saja. Oleh sebab itu, pada bab ini akan dijelaskan pelaksana dari rekomendasi rencana aksi pada kegiatan inti. Berikut ini merupakan Tabel 6.4 yang menjelaskan rencana aksi kegiatan inti dan pelaksananya.

Tabel 6.4 Rekomendasi Rencana Aksi Kegiatan Inti dan Pelaksana Kegiatan

No	Sektor Emisi GRK	Rekomendasi Rencana Aksi Kegiatan Inti	Pelaksana
1		Car Free Day	Dinas Lingkungan Hidup,
'		Car rice Bay	Dinas Perhubungan
2		Uji emisi kendaraan bermotor	Dinas Perhubungan
3		Menerapkan ISO 50001	Dinas Lingkungan Hidup
			Dinas Lingkungan Hidup,
	Sektor Energi		Dinas Perhubungan,
		Menghemat penggunaan energi fosil baik	Dinas Koperasi dan
4		melalui penggunaan teknologi yang lebih	Usaha Mikro, Badan
		bersih dan efisien	Perencanaan
			Pembangunan Kota
			Surabaya

No	Sektor Emisi GRK	Rekomendasi Rencana Aksi Kegiatan Inti	Pelaksana
5		Mendorong pemanfaatan energi baru terbarukan skala kecil dan menengah	Dinas Lingkungan Hidup, Dinas Perhubungan, Dinas Koperasi dan Usaha Mikro, Badan Perencanaan Pembangunan Kota Surabaya
6		Mengurangi kebutuhan akan perjalanan terutama daerah perkotaan	Dinas Perhubungan
7		Menggeser pola penggunaan kendaraan pribadi	Dinas Perhubungan
8		Meningkatkan efisiensi energi dan pengurangan karbon pada kendaraan bermotor pada sarana transportasi	Dinas Perhubungan
9		Mengurangi kemacetan di area perbatasan lalu lintas	Dinas Perhubungan
10		Terwujudnya transportasi multi moda angkutan barang dari kawasan ke pelabuhan tanjung perak	Dinas Perhubungan
11		Terbangunnya fasilitas pedestrian bagi pejalan kaki dan jalur sepeda di jalan raya wilayah perkotaan	Dinas Perhubungan
12		Melakukan program kemitraan konservasi energi bersama swasta/masyarakat	Dinas Lingkungan Hidup
13		Terlaksananya implementasi teknologi hemat energi pada peralatan rumah tangga	Dinas Lingkungan Hidup
14		Penggunaan gas alam sebagai bahan bakar angkutan umum perkotaan	Dinas Perhubungan
15		Terlaksananya peremajaan armada angkutan umum sesuai desain standar yang rendah emisi	Dinas Perhubungan
16		Membangun Non Motorized Transport (pedestrian dan jalur sepeda)	Dinas Perhubungan

No	Sektor Emisi GRK	Rekomendasi Rencana Aksi Kegiatan Inti	Pelaksana
17		Terlaksananya pemberian label kepada semua kendaraan baru menurut konsumsi bahan bakar (per 100 km) dan emisi CO ₂ (dalam g/km)	Dinas Perhubungan
18		Terlaksananya pembatasan kecepatan pada seluruh jalan tol untuk menurunkan emisi	Dinas Perhubungan
19		Program pengawasan dan pengendalian lalu lintas dan angkutan, yaitu meningkatkan persentase kelulusan uji emisi kendaraan bermotor	Dinas Perhubungan
20		Penurunan emisi dan intensitas emisi GRK melalui pembangunan rendah karbon	Badan Perencanaan Pembangunan Kota Surabaya, Dinas Lingkungan Hidup, Dinas Pekerjaan Umum Bina Marga dan Pematusan; Dinas Perumahan Rakyat dan Kawasan Permukiman, Cipta Karya dan Tata Ruang
21		Meningkatkan pasokan bahan bakar nabati dari bahan baku rendah karbon	Dinas Perhubungan
22		Menyelenggarakan penyuluhan dan workshop spesifik terkait industri tertentu mengenai dampak perubahan iklim, dan strategi adaptasi mitigasinya	Dinas Lingkungan Hidup
23	Sektor IPPU	Peningkatan kapasitas pemerintah dan pelaku industri dalam kegiatan mitigasi dampak perubahan iklim.	Dinas Lingkungan Hidup, Dinas Koperasi dan Usaha Mikro
24		Tersusunnya sistem <i>database</i> dan inventori strategi pengurangan emisi CO ₂ di berbagai sektor industri di Surabaya	Dinas Lingkungan Hidup
25		Terlaksananya pemantauan dan evaluasi program mitigasi untuk berbagai macam industri di Surabaya	Dinas Lingkungan Hidup

No	Sektor Emisi GRK	Rekomendasi Rencana Aksi Kegiatan Inti	Pelaksana
26		Melaksanakan penerapan produksi bersih khususnya pada IKM yang padat energi	Dinas Koperasi dan Usaha Mikro
27		Memberikan insentif pada IKM yang menerapkan produksi bersih	Dinas Koperasi dan Usaha Mikro
28		Sosialisasi penggunanaan bahan baku ramah lingkungan	Dinas Koperasi dan Usaha Mikro
29		Penerapan prinsip 3R (Reduce, Reuse, and Recycle)	Dinas Koperasi dan Usaha Mikro; Dinas Kebersihan Dan Ruang Terbuka Hijau
30		Pengembangan kemitraan dengan perguruan tinggi, masyarakat setempat, Lembaga Swadaya Masyarakat (LSM), dan dunia usaha dalam perlindungan dan pelestarian sumber daya alam	Dinas Koperasi dan Usaha Mikro
31		Penghapusan Bahan Perusak Ozon (BPO) pada 4 sektor (refrigerant, foam, chiller dan pemadam api)	Dinas Koperasi dan Usaha Mikro, Dinas Pemadam Kebakaran
32		Program upaya konservasi energi/pembinaan pengusahaan konservasi energi, yaitu meningkatkan jumlah kegiatan/usaha yang mendapatkan pembinaan pengusahaan konservasi energi	Dinas Koperasi dan Usaha Mikro
33		Peningkatan jumlah industri yang terpantau memenuhi baku mutu emisi	Dinas Lingkungan Hidup
34	Sektor AFOLU	Pengumpulan data yang diupdate secara berkala, sebagai contoh, persentase lahan sawah irigasi, lahan mangrove sebagai penyerap CO ₂ sehingga dapat dijadikan baseline untuk inventarisasi selanjutnya	Dinas Ketahanan Pangan dan Pertanian
35		Pemanfaatan metana yang ditimbulkan dari kegiatan peternakan	Dinas Ketahanan Pangan dan Pertanian
36		Pemanfaatan kotoran ternak sebagai pupuk pertanian	Dinas Ketahanan Pangan dan Pertanian

No	Sektor Emisi GRK	Rekomendasi Rencana Aksi Kegiatan Inti	Pelaksana
37		Meningkatkan penanaman pohon yang	Dinas Kebersihan Dan
37		mampu menyerap GRK	Ruang Terbuka Hijau
38		Penelitian dan pengembangan teknologi	Dinas Ketahanan Pangan
50		pertanian	dan Pertanian
39		Pengembangan program pendukung	Dinas Ketahanan Pangan
33		budidaya pertanian ramah lingkungan	dan Pertanian
		Pengembangan aplikasi kualitas pupuk	Dinas Katahanan Dangan
40		kompos organik dengan dosis mikroba	Dinas Ketahanan Pangan
		terhadap tanaman hortikultura dan padi	dan Pertanian
41		Perbaikan dan pemeliharaan jaringan	Dinas Ketahanan Pangan
41		irigasi	dan Pertanian
		Terlaksananya penggunaan teknologi	
42		untuk melindungi tanaman pangan dari	Dinas Ketahanan Pangan
72		gangguan organisme pengganggu	dan Pertanian
		tanaman dan dampak perubahan iklim	
		Menerapkan teknologi pengelolaan lahan	
43		dan budidaya pertanian dengan emisi GRK	Dinas Ketahanan Pangan
		serendah mungkin dan mengabsorbsi CO ₂	dan Pertanian
		secara optimal	
		Menstabilkan elevasi muka air dan	Dinas Ketahanan Pangan
44		memperlancar sirkulasi air pada jaringan	dan Pertanian
		irigasi	
45		Peningkatan produktivitas dan efisiensi	Dinas Ketahanan Pangan
40		pertanian menuju pertanian berkelanjutan	dan Pertanian
46		Pengelolaan sampah rumah tangga dan	Dinas Kebersihan Dan
40		pengelolaan limbah cair	Ruang Terbuka Hijau
		Tersedianya sistem pengelolaan air limbah	Badan Perencanaan
47		sistem terpusat skala kota (offsite) dan	Pembangunan Kota
		setempat (onsite)	Surabaya, Dinas
	Sektor Limbah	,	Lingkungan Hidup
48		Peningkatan kapasitas kelembagaan dan	Dinas Lingkungan Hidup
		peraturan di daerah	
49	Perbaikan proses pengelolaan sa Tempat Pemrosesan Akhir (TPA)	Perhaikan proses pengelolaan sampah di	Dinas Lingkungan Hidup,
			Dinas Kebersihan Dan
		Tompact officesocart/with (1177)	Ruang Terbuka Hijau

No	Sektor Emisi GRK	Rekomendasi Rencana Aksi Kegiatan Inti	Pelaksana
50		Melakukan uji kualitas air limbah dan uji udara emisi secara periodik dan berkelanjutan	Dinas Lingkungan Hidup
51		Mengkatkan pengawasan dan <i>monitoring</i> pengelolaan limbah	Dinas Lingkungan Hidup
52		Mengembangkan panduan mutu dan teknologi pengelolaan limbah	Dinas Lingkungan Hidup
53		Meningkatkan pemanfaatan limbah menjadi energi alternatif ramah lingkungan	Dinas Lingkungan Hidup, Dinas Kebersihan dan Ruang Terbuka Hijau
54		Meningkatkan penerapan teknologi produsi bersih dalam pengelolaan limbah industri	Dinas Lingkungan Hidup, Dinas Koperasi dan Usaha Mikro
55		Pengurangan timbulan sampah melalui 3R	Dinas Kebersihan Dan Ruang Terbuka Hijau
56		Melaksanakan pembangunan dan rehabilitasi TPA terpadu dengan sistem controlled landfill dan sanitary landfill secara bertahap	Dinas Kebersihan Dan Ruang Terbuka Hijau
57		Meningkatkan manajemen pengelolaan limbah padat/sampah di TPA	Dinas Kebersihan Dan Ruang Terbuka Hijau
58		Kajian inventarisasi GRK sektor limbah padat dan limbah cair setiap tahun.	Dinas Lingkungan Hidup, Dinas Kebersihan Dan Ruang Terbuka Hijau
59		Penyusunan norma, standar, prosedur pengelolaan sampah yang dijalankan menurut sistem manajemen yang baik pada TPA maupun TPS	Dinas Lingkungan Hidup, Dinas Kebersihan Dan Ruang Terbuka Hijau
60		Peningkatan pemanfaatan sampah yang memungkinkan untuk dijadikan kompos, arang atau briket	Dinas Lingkungan Hidup, Dinas Kebersihan Dan Ruang Terbuka Hijau

6.11.2 Rencana Aksi Daerah sebagai Kegiatan Pendukung

Dalam rangka penurunan emisi gas rumah kaca, diperlukan keseriusan semua pihak untuk keberhasilan bersama. Oleh sebab itu, pada bab ini akan dijelaskan pelaksana dari rekomendasi rencana aksi pada kegiatan pendukung.

Berikut ini merupakan Tabel 6.5 yang menjelaskan rencana aksi kegiatan pendukung dan pelaksananya.

Tabel 6.5 Rekomendasi Rencana Aksi Kegiatan Pendukung dan Pelaksana Kegiatan

No	Rencana Aksi Kegiatan Pendukung	Pelaksana
	Meningkatkan kesadaran dan	
1	pemahaman tentang pentingnya	Dinas Lingkungan Hidup, Semua
	kebijakan penurunan emisi	
	Meningkatkan mekanisme	Dinas Lingkungan Hidup, Badan
2	koordinasi dan sinergitas	Perencanaan Pembangunan Kota
_	antarbidang untuk mendukung	Surabaya, Semua
	kebijakan efisiensi energi	Gurabaya, Gorman
	Memasukkan kriteria efisiensi	
3	energi ke dalam <i>Standard</i>	Dinas Perdagangan dan Perindustrian,
	Operating Procedure (SOP)	Dinas Lingkungan Hidup
	perusahaan dan perkantoran	
	Memperkuat pencegahan dan	Dinas Lingkungan Hidup, Dinas
4	pengendalian emisi serta instrumen	Koperasi dan Usaha Mikro, Kecil dan
	ekonomi dan kebijakan	Menengah, Dinas Perdagangan dan
	Cherrotti dan nebijana.	Perindustrian
	Memperkuat kapasitas penegakan	
5	hukum dan peraturan mengenai	Dinas Lingkungan Hidup
	kualitas udara	
	Pelaksanaan inventarisasi emisi	
	GRK perlu rutin dilakukan setiap	
6	tahun demi memenuhi amanat	Dinas Lingkungan Hidup
	undang-undang dan juga	
	mengetahui pertumbuhan emisi	
	setiap tahun	
		Badan Perencanaan Pembangunan
	Memasukkan syarat pada <i>green</i>	Kota Surabaya, Dinas Pekerjaan Umum
7	building pada procurement proyek	Bina Marga dan Pematusan; Dinas
	pembangunan di lingkungan	Perumahan Rakyat dan Kawasan
	pemerintah daerah	Permukiman, Cipta Karya dan Tata
		Ruang
	Memperbanyak simpanan karbon	Dinas Ketahanan Pangan dan
8	biomassa dari lahan mangrove di	Pertanian
	Kota Surabaya	

BAB 7 KESIMPULAN DAN SARAN

7.1 Kesimpulan

Dari penjelasan setiap bab di atas, dapat diperoleh kesimpulan sebagai berikut :

- 1. Berdasarkan perhitungan yang telah dilakukan di Bab 5, emisi yang dihasilkan Kota Surabaya pada tahun 2020 sebesar 5.099,668 Gg CO₂.
- Emisi GRK pada masing-masing sektor yaitu: a) sektor energi sebesar 84,93% atau 4.330,941 Gg CO₂; b) sektor limbah sebesar 7,44% atau 379,506 Gg CO₂; c) sektor IPPU sebesar 6,54% atau 333,687 Gg CO₂; dan d) sektor AFOLU sebesar 1,09% atau 55,533 Gg CO₂.
- 3. Emisi terbesar berdasarkan hasil perhitungan berasal dari sektor energi yaitu 4.330,941 Gg CO₂ atau sebesar 84,93% dari total emisi GRK yang dihasilkan Kota Surabaya tahun 2020.
- 4. Emisi terendah berdasarkan hasil perhitungan berasal dari sektor AFOLU yaitu 55,533 Gg CO₂ atau sebesar 1,09% dari total emisi GRK yang dihasilkan Kota Surabaya tahun 2020.
- 5. Pada tahun 2020 terjadi penurunan emisi GRK sebesar 2.293.458,132 Gg CO₂ atau 99,78% dari emisi GRK tahun 2018. Angka tersebut sudah memenuhi syarat penurunan emisi berdasarkan *Nationally Determined Contributions* (NDC) yang menyebutkan target penurunan emisi tahun 2020 adalah 29%. Sektor limbah cair mengalami kenaikan 1,68 Gg CO₂/tahun. Perbandingan emisi GRK tahun 2018 dan 2020 dapat dilihat pada Tabel 7.1.

Tabel 7.1 Perbandingan Emisi GRK Kota Surabaya Tahun 2018 dan 2020

No.	Sektor	Emisi GRK tahun 2018 (Gg CO ₂ /tahun)	Emisi GRK tahun 2020 (Gg CO ₂ /tahun)	Penurunan Emisi GRK (Gg CO ₂ /tahun)	Persentase Penurunan (%)
	Limbah				
	Limbah Padat	1.738,87	343,2733	1.395,60	80,26%
1	Limbah Cair	34,55	36,2329	-1,68	-4,87%
	Total emisi GRK Sektor Limbah	1.773,42	379,51	1.393,91	78,60%
2	IPPU	13.525,40	333,687	13.191,713	97,53%
	Energi				
3	Sumber Tidak Bergerak	5.156	2.726,347	2.429,653	47,12%
3	Sumber Bergerak	2.267.661	1.604,594	2.266.056,406	99,93%
	Total emisi GRK Sektor Energi	2.283.184,26	4.330,941	2.278.853,319	99,81%

No.	Sektor	Emisi GRK tahun 2018 (Gg CO ₂ /tahun)	Emisi GRK tahun 2020 (Gg CO ₂ /tahun)	Penurunan Emisi GRK (Gg CO ₂ /tahun)	Persentase Penurunan (%)
	AFOLU				
	Peternakan	66	54,7025	11,2975	17,12%
,	Pertanian	1,1433	0,8308	0,3125	27,33%
4	Total emisi GRK Sektor AFOLU	74,72	55,5333	19,1867	25,68%
	Total emisi GRK	2.298.557,80	5.099,668	2.293.458,132	99,78%

Sumber: Hasil Perhitungan, 2021

Pada Tabel 7.1, jumlah data dan variabel tahun 2018 dan tahun 2020 yang digunakan berbeda sehingga menimbulkan perbedaan yang signifikan. Data emisi pada tahun 2018 bukan merupakan *baseline* untuk perhitungan ini. Pada perhitungan atau kajian tahun mendatang, Kota Surabaya dapat menggunakan *baseline* perhitungan dan data tahun 2020 agar tingkat emisi GRK dapat dibandingkan secara valid.

7.2 Saran

Terlepas dari rekomendasi upaya penurunan GRK yang tercantum dalam laporan ini, perlu adanya upaya perbaikan demi hasil yang lebih akurat. Perbaikan utama yang harus dilakukan adalah menambah sumber data yang dapat diidentifikasi GRK nya. Semakin banyak data yang dimiliki, semakin akurat informasi emisi GRK yang dihasilkan. Mengingat tidak mudah memperoleh data dari industri karena kurangnya respon dari industri serta penolakan karena satu dan lain hal, maka perlu upaya *follow up* secara intensif agar data yang dapat diolah lebih banyak.

Pada laporan 2021 ini, terdapat perbedaan sumber data yang digunakan dengan laporan Inventarisasi GRK tahun 2019. Oleh karena itu, adanya *baseline* dan *database* dapat memudahkan kajian dan hasilnya bisa lebih presisi. Diharapkan data industri dan *stakeholder* yang diperoleh pada laporan ini dapat dijadikan sebagai acuan pada pembuatan laporan di tahun berikutnya. Terkait dengan *baseline*, pada Bab 5 (analisis dan pembahasan) terdapat penggunaan faktor emisi yang mengambil dari jurnal penelitian. Apabila di tahun berikutnya akan melakukan perhitungan GRK, disarankan untuk menggunakan referensi jurnal dari penelitian yang terbaru sehingga hasil perhitungan valid dengan kondisi saat itu.

DAFTAR PUSTAKA

- 1. Agung, P., Hartono, D. & Awirya, A., 2017. Pengaruh Urbanisasi terhadap Konsumsi Energi dan Emisi CO₂: Analisis Provinsi di Indonesia. *Jurnal Ekonomi Kuantitatif Terapan,* p. Vol. 10 No. 2.
- 2. BAPPENAS, 2014. Pedoman Teknis Perhitungan Baseline Emisi Gas Rumah Kaca Sektor Berbasis Energi. Jakarta: BAPPENAS.
- 3. Dahlan, E. N., 2007. *Disertasi: Analisis kebutuhan luasan hutan kota sebagai sink gas* CO₂ antropogenik dari bahan bakar minyak dan gas di kota Bogor dengan pendekatan sistem dinamik. Bogor: Program Studi Ilmu Pengetahuan Kehutanan, Sekolah Pascasarjana, IPB.
- 4. Gratimah, R. G., 2009. *Tesis: Analisis kebutuhan hutan kota sebagai penyerap gas* CO₂ antropogenik di pusat Kota Medan. Medan: Jurusan Biologi, Fakultas Matematika dan IPA, USU.
- 5. Jawjit, W., Kroeze, C. & Jawjit, S., 2010. GREENING OF INDUSTRY NETWORK (GIN) 2010: CLIMATE CHANGE AND GREEN GROWTH: INNOVATING FOR SUSTAINABILTY. *Quantification of Greenhouse Gas Emissions from Primary Rubber Industries in Thailand.*
- 6. Karyadi, H., 2005. *Skripsi: Pengukuran daya serap karbondioksida lima jenis tanaman hutan kota.* Bogor: Departemen Konservasi Sumberdaya Hutan dan Ekowisata.
- 7. Kiran, G. & Kiranny, 2011. Carbon Sequestration by Urban Trees in Roadside of Vadodara City. *International Journal of Engineering Science and Technology*, pp. 3 (4) 3066-3070.
- 8. KLH, 2012. *Metodologi Penghitugan Tingkat Emisi Gas Rumah Kaca Pengadaan dan Penggunaan Energi.* Buku II Volume 1 ed. Jakarta: Kementerian Lingkungan Hidup.
- 9. KLH, 2012. *Metodologi Penghitungan Tingkat Emisi Gas Rumah Kaca Pengelolaan Limbah.* Buku II Volume 4 ed. Jakarta: Kementerian Lingkungan Hidup.
- 10. KLH, 2012. Pedoman Penyelenggaraan Inventarisasi Gas Rumah Kaca Nasional Buku II Volume 3: Metodologi Penghitungan Tingkat Emisi dan Penyerapan Gas Rumah Kaca Pertanian, Kehutanan, dan Penggunaan Lahan Lainnya. 2 ed. Indonesia: Kementerian Lingkungan Hidup.
- 11. Mardliyah, R., Raden Ario, dan Rudhi Pribadi. 2019. Estimasi Simpanan Karbon Pada Ekosistem Mangrove di Desa Pasar Banggi dan Tireman, Kecamatan Rembang Kabupaten Rembang. Journal of Marine Research 8 (1): 62 68.
- 12. Panjaitan, S. I., 2012. *Analisis Perhitungan Daya yang Dihasilkan dari Kotoran Sapi yang Diolah Menjadi Biogas di Daerah Pinggiran Kota Batam.* Batam: Universitas Maritim Raja Ali Haji.

- 13. Purwaningsih, S., 2007. *Skripsi: Kemampuan serapan karbondioksida pada tanaman hutan kota di Kebun Raya Bogor.* Bogor: Departemen Konservasi Sumberdaya Hutan dan Ekowisata, IPB.
- 14. Rachmawati, D., Isdradjad Setyobudiandi, dan Endang Hilmi. 2014. Potensi Estimasi Karbon Tersimpan Pada Vegetasi Mangrove di Wilayah Pesisir Muara Gembong Kabupaten Bekasi. Omni Akuatika XIII (19): 85 91.
- 15. Rechenberger, D., 2013. Natural gas is the most climate-friendly fossil fuel in electricity production, Kassel: WINGAS.
- 16. Wulandari, M., Hermawan & Purwanto, 2013. *Kajian Emisi* CO₂ *Berdasarkan Penggunaan Energi Rumah Tangga Sebagai Penyebab Pemanasan Global (Studi Kasus Perumahan Sebanteng, Gedang Asri, Susukan RW 07 Kab. Semarang).* Semarang, Prosididng Seminar Nasional Pengelolaan Sumberdaya Alam dan Lingkungan.
- 17. Yusuf, M. Y., 2015. *Tesis: Kemampuan penyerapan gas* CO₂ *beberapa jenis tanaman pada ruang terbuka hijau di Kota Makassar.* Makassar: Program Studi Pengelolaan Lingkungan Hidup, UNHAS.
- 18. IPCC Intergovernmental Panel on Climate Change Guideline 2006
- 19. https://www.epa.gov/sites/default/files/2015-07/documents/emission-factors_2014.pdf
- 20. Knowledge Centre Perubahan Iklim Mengenai Perubahan Iklim, Ditjenppi.menlhk.go.id. Available at : http://ditjenppi.menlhk.go.id/kcpi/index.php/info-iklim/perubahan-iklim (Accessed: 19 August 2021).
- 21. https://www.epa.gov/sites/default/files/2015-07/documents/emission-factors_2014.pdf

PEMERINTAH KOTA SURABAYA
DINAS LINGKUNGAN HIDUP
JALAN JIMERTO 25-27 (60272) - SURABAYA
(031) 5312144

http://lh.surabaya.go.id